METHODS: The sensor was tested with three kinds of samples, namely Pseudomonas aeruginosa, tuna, and tuna that was contaminated with P. aeruginosa bacteria. During the process of collecting sensor data, all samples were placed in a vacuum so that the gas or aroma produced was not contaminated with other aromas. Eight sensors were used which were designed and implemented in an electronic nose (E-nose) device that can withstand aroma. The data collection process was carried out for 48 h, with an interval of 6 h for each data collection. Data processing was performed by using the principal component analysis and support vector machine (SVM) methods to obtain a plot score visualization and classification and to determine the aroma pattern of the fish.
RESULTS: The results of this study indicate that the E-nose system is able to smell fish based on the hour with 95% of the cumulative variance of the main component in the classification test between fresh tuna and tuna fish contaminated with P. aeruginosa.
CONCLUSION: The SVM classifier was able to classify the healthy and unhealthy fish with an accuracy of 99%. The sensors that provided the highest response are the TGS 825 and TGS 826 sensors.
METHODS: Samples of 54 Wistar rats were divided into six groups: C- control group without treatment; C + wounded group without treatment; TB wound group with Povidone-iodine treatment; TD wounded group with doxycycline treatment; TLB wounded group with 403 nm diode laser treatment; and TLR wounded group with 649 nm diode laser treatment. Mandibular samples were observed for the number of lymphocytes and fibroblasts cells, new blood vessels formation, Interleukin 1β, and Collagen 1α expression level.
RESULTS: Based on the histopathological test results, red laser diode treatment significantly increased the number of lymphocyte, fibroblast cells and the formation of new blood vessels. Meanwhile, immunohistochemical tests showed an increase in the expression of the Colagen-1α protein which plays a role in the formation of collagen for new tissues formation after damage, as well as a decrease in Interleukin-1β expression level. Blue laser is also able to show a positive effect on wound healing even though its penetration level into the tissue is lower compared to red laser.
CONCLUSION: The red diode laser 649 nm has been shown to accelerate the process of proliferation in wound healing post molar extraction based on histopathological and immunohistochemical test results.