Displaying all 2 publications

Abstract:
Sort:
  1. Vasudevan M, Tai MJY, Perumal V, Gopinath SCB, Murthe SS, Ovinis M, et al.
    Biotechnol Appl Biochem, 2021 Dec;68(6):1386-1395.
    PMID: 33140493 DOI: 10.1002/bab.2060
    Acute myocardial infarction (AMI) is one of the leading causes of death worldwide. Cardiac troponin I (cTn1) is a commonly used biomarker for the diagnosis of AMI. Although there are various detection methods for the rapid detection of cTn1 such as optical, electrochemical, and acoustic techniques, electrochemical aptasensing techniques are commonly used because of their ease of handling, portability, and compactness. In this study, an electrochemical cTn1 biosensor, MoS2 nanoflowers on screen-printed electrodes assisted by aptamer, was synthesized using hydrothermal technique. Field emission scanning electron microscopy revealed distinct 2D nanosheets and jagged flower-like 3D MoS2 nanoflower structure, with X-ray diffraction analysis revealing well-stacked MoS2  layers. Voltammetry aptasensing of cTn1 ranges from 10 fM to 1 nM, with a detection limit at 10 fM and a sensitivity of 0.10 nA µM-1  cm-2 . This is a ∼fivefold improvement in selectivity compared with the other proteins and human serum. This novel aptasensor retained 90% of its biosensing activity after 6 weeks with a 4.3% RSD and is a promising high-performance biosensor for detecting cTn1.
  2. Tai MJY, Perumal V, Gopinath SCB, Raja PB, Ibrahim MNM, Jantan IN, et al.
    Sci Rep, 2021 Mar 09;11(1):5475.
    PMID: 33750861 DOI: 10.1038/s41598-021-85039-2
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), requires a high level of attention and is one of the most infectious diseases in the air. Present methods of diagnosing TB remain ineffective owing to their low sensitivity and time consumption. In this study, we produced a green graphene nanofiber laser biosensor (LSG-NF) decorated with oil palm lignin-based synthetic silver nanoparticles (AgNPs). The resulting composite morphology was observed by field-emission scanning electron microscopy and transmission electron microscopy, which revealed the effective adaptation of the AgNPs to the LSG-NF surface. The successful attachment of AgNPs and LSG-NFs was also evident from X-ray diffraction and Raman spectroscopy studies. In order to verify the sensing efficiency, a selective DNA sample captured on AgNPs was investigated for specific binding with M.tb target DNA through selective hybridisation and mismatch analysis. Electrochemical impedance studies further confirmed sensitive detection of up to 1 fM, where a detection limit of 10-15 M was obtained by estimating the signal-to-noise ratio (S/N = 3:1) as 3σ. Successful DNA immobilisation and hybridisation was confirmed by the detection of phosphorus and nitrogen peaks based on X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The stability and repeatability of the analysis were high. This approach provides an affordable potential sensing system for the determination of M. tuberculosis biomarker and thus provides a new direction in medical diagnosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links