The genetic relationship between any two populations is a function of the differences between them in allele frequencies, with this relationship commonly expressed in terms of a genetic distance. For example if the two populations are homozygous for different alleles at a particular locus, the distance is the maximum possible whereas if the allele frequencies in the two populations are identical, the distance is zero. The estimated genetic distances may vary among loci. Thus, the most accurate measures of relationships will be obtained by averaging many loci (Nei, 1978). In plant and animal breeding, it is expected that a cross between two individuals originating from two populations with a large genetic distance between them will result in maximum heterosis or hybrid vigour. Many estimates of genetic distances are available in the literature but Nei’s standard genetic distance, D, (Nei, 1972, 1978) had been extensively used in studies of human, animal and plant varieties, races, breeds, strains, populations, species and genera.
Malaysia, with her tropical jungles, mangroves and seas, is blessed with riches in biodiversity, being one of the twelve megabiodiversity countries on earth. Genetics has contributed substantially to the success of our country's agricultural production especially of rubber and palm oil. Hence, it should play a pivotal role in helping Malaysia fulfill her responsibility to identify, characterize and sustainably utilize her numerous indigenous bioresources for the benefit of humanity.
Inter-simple sequence repeats (ISSRs) are regions in the genome flanked by microsatellite sequences.
PCR amplification of these regions using a single primer yields multiple amplification products that can
be used as a dominant multilocus marker system for the study of genetic variation in various organisms.
ISSR markers are easy to use, low-cost, and methodologically less demanding compared to other
dominant markers, making it an ideal genetic marker for beginners and for organisms whose genetic
information is lacking. Here, we comment upon some of the intricacies often overlooked in designing an
ISSR experiment, clarify some misconceptions, and provide recommendations on using ISSR markers
in genetic variation studies.
The concentrations of cadmium, copper, zinc and lead, in the total soft tissues of green-lipped mussel Perna viridis of a wide range of sizes (2-11 cm), were determined from a population at Pasir Panjang. The metal contents (μg per individual) and concentrations (μg per g) of cadmium, lead, copper and zinc were studied in P. viridis to find the relationships with body sizes. Smaller and younger mussels showed higher concentrations (μg per g) of Cd, Pb and Zn than the larger and older ones. The results of the present study showed that the plotting of the metal content, against dry body flesh weight on a double logarithmic basis, gave good positive straight lines; this observation is in agreement with Boyden’s formula (1977). This indicated that P. viridis showed a different physiological strategy for each metal being studied, which is related to age.
In this study, a polluted site at Kg. Pasir Puteh was assessed for heavy metal pollution by using
transplanted caged mussel (Perna viridis) from a relatively clean population, Sg. Melayu; both are located in the Strait of Johore. For control purposes, the P. viridis from Kg. Pasir Puteh were also simultaneously transplanted in Sg. Melayu at the same time. It was found that Zn was the metal which got accumulated fastest in the transplanted mussel while Cd was the slowest. This study indicated that the byssus of Perna viridis was most effective for biomonitoring of Cd, Ni, Pb and Zn, while the shell could be used for the biomonitoring of Cu, Ni and Pb and the total soft tissue for the biomonitoring of Ni since they were able to accumulate and eliminate the respective metals well. By using mussel as a biomonitor, the present study found that Kg. Pasir Puteh, which is located in the eastern part of the Strait of Johore, had significantly higher contamination and bioavailabilities of Cd, Cu, Fe, Ni, Pb and Zn. Therefore, the use of the transplanted caged mussels is very useful for heavy metal assessment purposes since it can increase the validity of data interpretation by minimizing ecological factors.