Displaying all 4 publications

Abstract:
Sort:
  1. Shaminie J, Peh SC, Tan MJ
    Pathology, 2003 Oct;35(5):414-21.
    PMID: 14555386
    AIMS: PCR has been the primary method used for the detection of t(14;18) translocation in formalin-fixed, paraffin-embedded tissues. This technique mainly targets the well-characterised breakpoint regions in chromosomes 14 and 18. FISH is now applicable on paraffin tissue sections and has been suggested to be capable of detecting essentially 100% of t(14;18) translocated cases. In this study, we described the application of both PCR and FISH for the detection of t(14;18) translocation.

    METHODS: Fifty follicular lymphoma cases were retrieved from the files of the Department of Pathology, University of Malaya Medical Centre (UMMC). Nested PCR amplification of MBR/JH and mcr/JH was performed in these cases, and those cases that did not demonstrate the translocation were subjected to FISH analysis.

    RESULTS: Thirty cases (60%) had t(14;18) translocation detected by PCR, 25 (50%) had breakpoint with MBR and five (10%) involved mcr. Twenty cases without detectable t(14;18) translocation by PCR were analysed by FISH. Eleven cases were successfully probed, and four of them showed positive translocation signal.

    CONCLUSIONS: The combination of PCR and FISH analysis on paraffin tissue sections for the detection of t(14;18) translocation increases the sensitivity of detection from 60 to 68%. Problems encountered in our FISH analysis on tissue sections impose certain limitations in using this technique for retrospective screening of large number of samples. Therefore, we suggested the application of PCR as the first screening tool on retrospective archival materials, followed by FISH on those PCR-negative cases.

  2. Thoniyot P, Tan MJ, Karim AA, Young DJ, Loh XJ
    Adv Sci (Weinh), 2015 02;2(1-2):1400010.
    PMID: 27980900
    New technologies rely on the development of new materials, and these may simply be the innovative combination of known components. The structural combination of a polymer hydrogel network with a nanoparticle (metals, non-metals, metal oxides, and polymeric moieties) holds the promise of providing superior functionality to the composite material with applications in diverse fields, including catalysis, electronics, bio-sensing, drug delivery, nano-medicine, and environmental remediation. This mixing may result in a synergistic property enhancement of each component: for example, the mechanical strength of the hydrogel and concomitantly decrease aggregation of the nanoparticles. These mutual benefits and the associated potential applications have seen a surge of interest in the past decade from multi-disciplinary research groups. Recent advances in nanoparticle-hydrogel composites are herein reviewed with a focus on their synthesis, design, potential applications, and the inherent challenges accompanying these exciting materials.
  3. Panda B, Noor Mohamed NA, Paul SC, Bhagath Singh G, Tan MJ, Šavija B
    Materials (Basel), 2019 Jul 04;12(13).
    PMID: 31277393 DOI: 10.3390/ma12132149
    The advent of digital concrete fabrication calls for advancing our understanding of the interaction of 3D printing with material rheology and print parameters, in addition to developing new measurement and control techniques. Thixotropy is the main challenge associated with printable material, which offers high yield strength and low viscosity. The higher the thixotropy, the better the shape stability and the higher buildability. However, exceeding a minimum value of thixotropy can cause high extrusion pressure and poor interface bond strength if the printing parameters are not optimized to the part design. This paper aims to investigate the effects of both material and process parameters on the buildability and inter-layer adhesion properties of 3D printed cementitious materials, produced with different thixotropy and print head standoff distances. Nano particles are used to increase the thixotropy and, in this context, a lower standoff distance is found to be useful for improving the bond strength. The low viscosity "control" sample is unaffected by the variation in standoff distances, which is attributed to its flowability and low yield stress characteristics that lead to strong interfacial bonding. This is supported by our microscopic observations.
  4. Liu YZ, Zhao X, Huang YW, Chen Z, Li FC, Gao LD, et al.
    Zhonghua Yu Fang Yi Xue Za Zhi, 2012 Mar;46(3):258-63.
    PMID: 22800599
    To investigate the gene variations of influenza B virus isolated in Hunan province from 2007 to 2010.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links