Displaying all 3 publications

Abstract:
Sort:
  1. Joon Ching Juan, Sze Nee Goh, Ta Yeong Wu, Emy Marlina Samsudin, Tan Tong Ling, Sharifah Bee Abd. Hamid
    Sains Malaysiana, 2015;44:1011-1019.
    Disposal of dye wastewater into water streams without treatment endangers human and marine lives. This work focused on the second largest class of textile dyes after azo dyes due to its high resistivity to biodegradation and high toxicity. The photocatalytic degradation of Reactive Blue 4 (RB4), an anthraquinone dye, has been investigated using pure anatase nano titanium (IV) oxide (TiO2). The dye molecules were fully degraded and the addition of hydrogen peroxide (H2O2) enhanced the photodegradation efficiency. It is found that the degradation as the hydroxyl radicals in the bulk solution is sufficient for complete mineralisation. The disappearance of the dye follows pseudo-first-order kinetics. The effect of pH, amount of photocatalyst, UV-light intensity, light source and concentration of hydrogen peroxide was ascertained.
  2. Tan TL, Zulkifli NA, Zaman ASK, Jusoh MB, Yaapar MN, Rashid SA
    Plant Physiol Biochem, 2021 May;162:737-751.
    PMID: 33799185 DOI: 10.1016/j.plaphy.2021.03.031
    Photosynthesis is one of the most fundamental biochemical processes on earth such that it is vital to the existence of most lives on this planet. In fact, unravelling the potentials in enhancing photosynthetic efficiency and electron transfer process, which are thought to improve plant growth is one of the emerging approaches in tackling modern agricultural shortcomings. In light of this, zero-dimensional carbon quantum dots (CQD) have emerged and garnered much interest in recent years which can enhance photosynthesis by modulating the associated electron transfer process. In this work, CQD was extracted from empty fruit bunch (EFB) biochar using a green acid-free microwave method. The resulting CQD was characterized using HRTEM, PL, UV-Vis and XPS. Typical rice (C3) and corn (C4) crops were selected in the present study in order to compare the significant effect of CQD on the two different photosynthetic pathways of crops. CQD was first introduced into crop via foliar spraying application instead of localised placement of CQD before seedling development. The influence of CQD on the photosynthetic efficiency of rice (C3) and corn (C4) leaves was determined by measuring both carbon dioxide conversion and the stomatal conductance of the leaf. As a result, the introduction of CQD greatly enhanced the photosynthesis in CQD-exposed crops. This is the first study focusing on phylogenetically constrained differences in photosynthetic responses between C3 and C4 crops upon CQD exposure, which gives a better insight into the understanding of photosynthesis process and shows considerable promise in nanomaterial research for sustainable agriculture practices.
  3. A/P Chowmasundaram Y, Tan TL, Nulit R, Jusoh M, Rashid SA
    RSC Adv, 2023 Aug 21;13(36):25093-25117.
    PMID: 37622012 DOI: 10.1039/d3ra01217d
    Since the world's population is expanding, mankind may be faced with a huge dilemma in the future, which is food scarcity. The situation can be mitigated by employing sustainable cutting-edge agricultural methods to maintain the food supply chain. In recent years, carbon quantum dots (CQD), a member of the well-known carbon-based nanomaterials family, have given rise to a new generation of technologies that have the potential to revolutionise horticulture and agriculture research. CQD has drawn much attention from the research community in agriculture owing to their remarkable properties such as good photoluminescence behaviour, high biocompatibility, photo-induced electron transfer, low cost, and low toxicity. These unique properties have led CQD to become a promising material to increase plant growth and yield in the agriculture field. This review paper highlights the recent advances of CQD application in plant growth and photosynthesis rate at different concentrations, with a focus on CQD uptake and translocation, as well as electron transfer mechanism. The toxicity and biocompatibility studies of CQD, as well as industrial scale applications of CQD for agriculture are discussed. Finally, the current challenges of the present and future perspectives in this agriculture research are presented.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links