Displaying all 2 publications

Abstract:
Sort:
  1. Tengku Hashim TJ, Mohamed A
    PLoS One, 2017;12(10):e0177507.
    PMID: 28991919 DOI: 10.1371/journal.pone.0177507
    The growing interest in distributed generation (DG) in recent years has led to a number of generators connected to a distribution system. The integration of DGs in a distribution system has resulted in a network known as active distribution network due to the existence of bidirectional power flow in the system. Voltage rise issue is one of the predominantly important technical issues to be addressed when DGs exist in an active distribution network. This paper presents the application of the backtracking search algorithm (BSA), which is relatively new optimisation technique to determine the optimal settings of coordinated voltage control in a distribution system. The coordinated voltage control considers power factor, on-load tap-changer and generation curtailment control to manage voltage rise issue. A multi-objective function is formulated to minimise total losses and voltage deviation in a distribution system. The proposed BSA is compared with that of particle swarm optimisation (PSO) so as to evaluate its effectiveness in determining the optimal settings of power factor, tap-changer and percentage active power generation to be curtailed. The load flow algorithm from MATPOWER is integrated in the MATLAB environment to solve the multi-objective optimisation problem. Both the BSA and PSO optimisation techniques have been tested on a radial 13-bus distribution system and the results show that the BSA performs better than PSO by providing better fitness value and convergence rate.
  2. Manoharan P, Ravichandran S, Kavitha S, Tengku Hashim TJ, Alsoud AR, Sin TC
    Sci Rep, 2024 Sep 09;14(1):20979.
    PMID: 39251720 DOI: 10.1038/s41598-024-71223-7
    In this paper, a new method is designed to effectively determine the parameters of proton exchange membrane fuel cells (PEMFCs), i.e., ξ 1 , ξ 2 , ξ 3 , ξ 4 , R C , λ , and b . The fuel cells (FCs) involve multiple variable quantities with complex non-linear behaviours, demanding accurate modelling to ensure optimal operation. An accurate model of these FCs is essential to evaluate their performance accurately. Furthermore, the design of the FCs significantly impacts simulation studies, which are crucial for various technological applications. This study proposed an improved parameter estimation procedure for PEMFCs by using the GOOSE algorithm, which was inspired by the adaptive behaviours found in geese during their relaxing and foraging times. The orthogonal learning mechanism improves the performance of the original GOOSE algorithm. This FC model uses the root mean squared error as the objective function for optimizing the unknown parameters. In order to validate the proposed algorithm, a number of experiments using various datasets were conducted and compared the outcomes with different state-of-the-art algorithms. The outcomes indicate that the proposed GOOSE algorithm not only produced promising results but also exhibited superior performance in comparison to other similar algorithms. This approach demonstrates the ability of the GOOSE algorithm to simulate complex systems and enhances the robustness and adaptability of the simulation tool by integrating essential behaviours into the computational framework. The proposed strategy facilitates the development of more accurate and effective advancements in the utilization of FCs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links