Displaying all 5 publications

Abstract:
Sort:
  1. Teo WFA, Tan GYA, Li WJ
    Int J Syst Evol Microbiol, 2021 Oct;71(10).
    PMID: 34714227 DOI: 10.1099/ijsem.0.005075
    The taxonomic positions of members within the family Pseudonocardiaceae were assessed based on phylogenomic trees reconstructed using core-proteome and genome blast distance phylogeny approaches. The closely clustered genome sequences from the type strains of validly published names within the family Pseudonocardiaceae were analysed using overall genome-related indices based on average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values. The family Pseudonocardiaceae consists of the type genus Pseudonocardia, as well as the genera Actinoalloteichus, Actinocrispum, Actinokineospora, Actinomycetospora, Actinophytocola, Actinopolyspora, Actinorectispora, Actinosynnema, Allokutzneria, Allosaccharopolyspora gen. nov., Amycolatopsis, Bounagaea, Crossiella, Gandjariella, Goodfellowiella, Haloactinomyces, Haloechinothrix, Halopolyspora, Halosaccharopolyspora gen. nov., Herbihabitans, Kibdelosporangium, Kutzneria, Labedaea, Lentzea, Longimycelium, Prauserella, Saccharomonospora, Saccharopolyspora, Saccharothrix, Salinifilum, Sciscionella, Streptoalloteichus, Tamaricihabitans, Thermocrispum, Thermotunica and Umezawaea. The G+C contents of the Pseudonocardiaceae genomes ranged from 66.2 to 74.6 mol% and genome sizes ranged from 3.69 to 12.28 Mbp. Based on the results of phylogenomic analysis, the names Allosaccharopolyspora coralli comb. nov., Halosaccharopolyspora lacisalsi comb. nov. and Actinoalloteichus caeruleus comb. nov. are proposed. This study revealed that Actinokineospora mzabensis is a heterotypic synonym of Actinokineospora spheciospongiae, Lentzea deserti is a heterotypic synonym of Lentzea atacamensis, Prauserella endophytica is a heterotypic synonym of Prauserella coralliicola, and Prauserella flava and Prauserella sediminis are heterotypic synonyms of Prauserella salsuginis. This study addresses the nomenclature conundrums of Actinoalloteichus cyanogriseus and Streptomyces caeruleus as well as Micropolyspora internatus and Saccharomonospora viridis.
  2. Teoh SH, Wong GR, Teo WFA, Mazumdar P
    Plant Dis, 2023 Aug 03.
    PMID: 37537794 DOI: 10.1094/PDIS-06-23-1239-PDN
    Brassica rapa var. Chinensis (curly dwarf pak choy) is commonly grown in large-scale vertical farming aquaponic systems. In October 2022, soft rot symptoms and dark brown lesions were observed on B. rapa grown in a commercial aquaponic farm located in Perak, Malaysia. The infected stem appeared brown and water soaked. Severely infected plants produced creamy white ooze on the surface before collapsing entirely (Fig. 1A and B). Infected leaves displayed yellow-brown symptoms and eventually rotted (Fig. 1C); the healthy plants were symptomless (Fig. 1D). About 20 % of the 20,000 B. rapa plants on the farm exhibited symptoms. Ten randomly selected symptomatic plants, five with infected stems and five with infected leaves, were surface sterilized. Each tissue (1.0 cm2) was homogenized and suspended in a saline solution. The suspensions were then serially diluted and plated separately on Luria-Bertani agar. After a 16-h incubation period, stem tissue yielded 12 isolated colonies, while leaf tissue produced 8 colonies. These isolates were subjected to dereplication using RAPD-PCR (Krzewinski et al., 2001), revealing two distinct RAPD patterns. The cultures, named Pathogen Stem 2 (PS2, obtained from the stem) and Pathogen Leaf 2 (PL2, obtained from the leaf), were initially identified as Pectobacterium sp. through 16S rRNA sequence analysis (Frank et al., 2008) on the EzBioCloud 16S database (Yoon et al., 2017). Further identification of the Pectobacterium species was conducted using multilocus sequence analysis (MLSA) of the icdA, mdh, proA, and mltD genes (Ma et al., 2007). The sequences were deposited in GenBank (OQ660180, OQ660181, and OR206482-OR206489). Based on MLSA phylogeny, PS2 and PL2 were identified as Pectobacterium carotovorum and Pectobacterium aroidearum, respectively (Fig. 2A). Anaerobic assays confirmed their facultative anaerobic nature, while Gram staining revealed Gram-negative, rod-shaped morphology consistent with Pectobacterium (Fig. 2B and C). For the re-inoculation study, one-month-old healthy B. rapa plants were used. PS2 was inoculated into petioles, while PL2 was inoculated into leaves separately (3 biological replicates × 3 leaves for each replicate) using the prick inoculation method (Wei et al., 2019). Sterile needles were used to prick the plant tissues, and 10 µL of bacterial suspensions (2.40×109 CFU/mL) in saline were inoculated onto the pricked spots. Negative control using sterile saline was included. The inoculated plants were maintained in a controlled growth chamber (25 ± 1°C, relative humidity 80 ± 5%). After 48 hpi, the petiole tissue inoculated with PS2 showed bacterial soft rot symptoms (Fig. 1F) and leaves inoculated with PL2 appeared dark brown around the wound (Fig. 1G), similar to the symptoms observed in the commercial farm (Fig. 1B, C); while control plants remained asymptomatic (Fig. 1E). Bacteria were re-isolated from the inoculated petiole and leaf tissue and their identities were confirmed by RAPD-PCR. The RAPD profiles of the bacteria reisolated from the petiole and leaf tissues were the same as those of PS2 and PL2 respectively (Fig. 1H). The pathogenicity of PS2 and PL2 was thus confirmed. To our knowledge, this is the first report of bacterial soft rot on B. rapa in aquaponic systems caused by P. carotovorum and P. aroidearum in Malaysia. The identification of these pathogens is crucial for the prevention of disease outbreaks and to develop an effective disease management strategy.
  3. Teo WFA, Devaraj K, Nor MNM, Li WJ, Tan GYA
    Curr Microbiol, 2024 Mar 29;81(5):124.
    PMID: 38551738 DOI: 10.1007/s00284-024-03634-8
    In this study, we employed a polyphasic approach to determine the taxonomic position of a newly isolated actinomycete, designated SE31T, obtained from a sediment sample collected at Cape Rochado, Malaysia. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain SE31T belonged to the family Pseudonocardiaceae and exhibited the highest sequence similarity (98.9%) to Sciscionella marina. Further genomic analysis demonstrated a 93.4% average nucleotide identity and 54.4% digital DNA-DNA hybridization relatedness between strain SE31T and S. marina. The chemotaxonomic characteristics of strain SE31T were typical of the genus Sciscionella, including cell-wall chemotype IV (with meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as whole-cell sugars). The identified polar lipids of strain SE31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, and hydroxyphosphatidymethylethanolamine. The primary menaquinone observed was MK-9(H4), and the major cellular fatty acid was iso-C16:0. The genomic DNA size of strain SE31T was determined to be 7.4 Mbp with a G+C content of 68.7%. Based on these comprehensive findings, strain SE31T represents a novel species within the genus Sciscionella, in which the name Sciscionella sediminilitoris sp. nov. is proposed. The type strain of Sciscionella sediminilitoris is SE31T (= DSM 46824T = TBRC 5134T).
  4. Tian X, Teo WFA, Wee WY, Yang Y, Ahmed H, Jakubovics NS, et al.
    BMC Genomics, 2023 Dec 04;24(1):734.
    PMID: 38049764 DOI: 10.1186/s12864-023-09831-2
    BACKGROUND: Actinomyces strains are commonly found as part of the normal microflora on human tissue surfaces, including the oropharynx, gastrointestinal tract, and female genital tract. Understanding the diversity and characterization of Actinomyces species is crucial for human health, as they play an important role in dental plaque formation and biofilm-related infections. Two Actinomyces strains ATCC 49340 T and ATCC 51655 T have been utilized in various studies, but their accurate species classification and description remain unresolved.

    RESULTS: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA, rpoB, pgi, metG, gltA, gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them.

    CONCLUSION: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed.

  5. Jiao JY, Abdugheni R, Zhang DF, Ahmed I, Ali M, Chuvochina M, et al.
    Natl Sci Rev, 2024 Jul;11(7):nwae168.
    PMID: 39071100 DOI: 10.1093/nsr/nwae168
    Prokaryotes are ubiquitous in the biosphere, important for human health and drive diverse biological and environmental processes. Systematics of prokaryotes, whose origins can be traced to the discovery of microorganisms in the 17th century, has transitioned from a phenotype-based classification to a more comprehensive polyphasic taxonomy and eventually to the current genome-based taxonomic approach. This transition aligns with a foundational shift from studies focused on phenotypic traits that have limited comparative value to those using genome sequences. In this context, Bergey's Manual of Systematics of Archaea and Bacteria (BMSAB) and Bergey's International Society for Microbial Systematics (BISMiS) play a pivotal role in guiding prokaryotic systematics. This review focuses on the historical development of prokaryotic systematics with a focus on the roles of BMSAB and BISMiS. We also explore significant contributions and achievements by microbiologists, highlight the latest progress in the field and anticipate challenges and opportunities within prokaryotic systematics. Additionally, we outline five focal points of BISMiS that are aimed at addressing these challenges. In conclusion, our collaborative effort seeks to enhance ongoing advancements in prokaryotic systematics, ensuring its continued relevance and innovative characters in the contemporary landscape of genomics and bioinformatics.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links