Displaying all 5 publications

Abstract:
Sort:
  1. Sudhamani C, Roslee M, Tiang JJ, Rehman AU
    Sensors (Basel), 2023 Feb 20;23(4).
    PMID: 36850954 DOI: 10.3390/s23042356
    Fifth generation (5G) is a recent wireless communication technology in mobile networks. The key parameters of 5G are enhanced coverage, ultra reliable low latency, high data rates, massive connectivity and better support to mobility. Enhanced coverage is one of the major issues in the 5G and beyond 5G networks, which will be affecting the overall system performance and end user experience. The increasing number of base stations may increase the coverage but it leads to interference between the cell edge users, which in turn impacts the coverage. Therefore, enhanced coverage is one of the future challenging issues in cellular networks. In this survey, coverage enhancement techniques are explored to improve the overall system performance, throughput, coverage capacity, spectral efficiency, outage probability, data rates, and latency. The main aim of this article is to highlight the recent developments and deployments made towards the enhanced network coverage and to discuss its future research challenges.
  2. Roy S, Tiang JJ, Roslee MB, Ahmed MT, Kouzani AZ, Mahmud MAP
    Sensors (Basel), 2022 Jan 06;22(2).
    PMID: 35062383 DOI: 10.3390/s22020424
    For low input radio frequency (RF) power from -35 to 5 dBm, a novel quad-band RF energy harvester (RFEH) with an improved impedance matching network (IMN) is proposed to overcome the poor conversion efficiency and limited RF power range of the ambient environment. In this research, an RF spectral survey was performed in the semi-urban region of Malaysia, and using these results, a multi-frequency highly sensitive RF energy harvester was designed to harvest energy from available frequency bands within the 0.8 GHz to 2.6 GHz frequency range. Firstly, a new IMN is implemented to improve the rectifying circuit's efficiency in ambient conditions. Secondly, a self-complementary log-periodic higher bandwidth antenna is proposed. Finally, the design and manufacture of the proposed RF harvester's prototype are carried out and tested to realize its output in the desired frequency bands. For an accumulative -15 dBm input RF power that is uniformly universal across the four radio frequency bands, the harvester's calculated dc rectification efficiency is about 35 percent and reaches 52 percent at -20 dBm. Measurement in an ambient RF setting shows that the proposed harvester is able to harvest dc energy at -20 dBm up to 0.678 V.
  3. Ahmed TH, Tiang JJ, Mahmud A, Gwo-Chin C, Do DT
    Sensors (Basel), 2023 Jul 29;23(15).
    PMID: 37571565 DOI: 10.3390/s23156782
    This paper develops a novel approach for reliable vehicle-to-vehicle (V2V) communication in various environments. A switched beam antenna is deployed at the transmitting and receiving points, with a beam management system that concentrates the power in each beam using a low-computation algorithm and a potential mathematical model. The algorithm is designed to be flexible for various environments faced by vehicles. Additionally, an anti-failure system is proposed in case the intelligent transportation system (ITS) system fails to retrieve real-time Packet Delivery Ratio (PDR) values related to traffic density. Performance metrics include the time to collision in seconds, the bit error rate (BER), the packet error rate (PER), the average throughput (Mbps), the beam selection probability, and computational complexity factors. The proposed system is compared with traditional systems. Extensive experiments, simulations, and comparisons show that the proposed approach is excellent and reliable for vehicular systems. The proposed study demonstrates an average throughput of 1.7 Mbps, surpassing conventional methods' typical throughput of 1.35 Mbps. Moreover, the bit error rate (BER) of the proposed study is reduced by a factor of 0.1. Additionally, the proposed framework achieves a beam power efficiency of touching to 100% at computational factor of 34. These metrics indicate that the proposed method is both efficient and sufficiently robust.
  4. Raihan MJ, Labib MI, Jim AAJ, Tiang JJ, Biswas U, Nahid AA
    Sensors (Basel), 2024 Aug 19;24(16).
    PMID: 39205045 DOI: 10.3390/s24165351
    Sign language is undoubtedly a common way of communication among deaf and non-verbal people. But it is not common among hearing people to use sign language to express feelings or share information in everyday life. Therefore, a significant communication gap exists between deaf and hearing individuals, despite both groups experiencing similar emotions and sentiments. In this paper, we developed a convolutional neural network-squeeze excitation network to predict the sign language signs and developed a smartphone application to provide access to the ML model to use it. The SE block provides attention to the channel of the image, thus improving the performance of the model. On the other hand, the smartphone application brings the ML model close to people so that everyone can benefit from it. In addition, we used the Shapley additive explanation to interpret the black box nature of the ML model and understand the models working from within. Using our ML model, we achieved an accuracy of 99.86% on the KU-BdSL dataset. The SHAP analysis shows that the model primarily relies on hand-related visual cues to predict sign language signs, aligning with human communication patterns.
  5. Muhammad S, Waly MI, AlJarallah NA, Ghayoula R, Negm AS, Smida A, et al.
    Sci Rep, 2023 Aug 15;13(1):13246.
    PMID: 37582883 DOI: 10.1038/s41598-023-40486-x
    This paper described a four-band implantable RF rectifier with simplified circuit complexity. Each RF-rectifier cell is sequentially matched to the four operational frequencies to accomplish the proposed design. The proposed RF rectifier can harvest RF signals at 1.830, 2.100, and white space Wi-Fi bands between 2.38 to 2.68 GHz, respectively. At 2.100 GHz, the proposed RF harvester achieved a maximum (radio frequency direct current) RF-to-DC power conversion efficiency (PCE) of 73.00% and an output DC voltage [Formula: see text] of 1.61 V for an RF power of 2 dBm. The outdoor performance of the rectenna shows a [Formula: see text] of 0.440 V and drives a low-power bq25504-674 evaluation module (EVM) at 1.362 V. The dimension of the RF-rectifier on the FR-4 PCB board is 0.27[Formula: see text] [Formula: see text] 0.29[Formula: see text]. The RF-rectifier demonstrates the capacity to effectively utilize the frequency domain by employing multi-band operation and exhibiting a good impedance bandwidth through a sequential matching technique. Thus, by effectively controlling the rectenna's ambient performance, the proposed design holds the potential for powering a range of low-power biomedical implantable devices. (BIDs).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links