Displaying all 12 publications

Abstract:
Sort:
  1. Tiong TJ, Price GJ, Kanagasingam S
    Ultrason Sonochem, 2014 Sep;21(5):1858-65.
    PMID: 24735986 DOI: 10.1016/j.ultsonch.2014.03.024
    One of the uses of ultrasound in dentistry is in the field of endodontics (i.e. root canal treatment) in order to enhance cleaning efficiency during the treatment. The acoustic pressures generated by the oscillation of files in narrow channels has been calculated using the COMSOL simulation package. Acoustic pressures in excess of the cavitation threshold can be generated and higher values were found in narrower channels. This parallels experimental observations of sonochemiluminescence. The effect of varying the channel width and length and the dimensions and shape of the file are reported. As well as explaining experimental observations, the work provides a basis for the further development and optimisation of the design of endosonic files.
  2. Tiong TJ, Chandesa T, Yap YH
    Ultrason Sonochem, 2017 May;36:78-87.
    PMID: 28069242 DOI: 10.1016/j.ultsonch.2016.11.003
    One common method to determine the existence of cavitational activity in power ultrasonics systems is by capturing images of sonoluminescence (SL) or sonochemiluminescence (SCL) in a dark environment. Conventionally, the light emitted from SL or SCL was detected based on the number of photons. Though this method is effective, it could not identify the sonochemical zones of an ultrasonic systems. SL/SCL images, on the other hand, enable identification of 'active' sonochemical zones. However, these images often provide just qualitative data as the harvesting of light intensity data from the images is tedious and require high resolution images. In this work, we propose a new image analysis technique using pseudo-colouring images to quantify the SCL zones based on the intensities of the SCL images and followed by comparison of the active SCL zones with COMSOL simulated acoustic pressure zones.
  3. Tiong TJ, Low LE, Teoh HJ, Chin JK, Manickam S
    Ultrason Sonochem, 2015 Nov;27:165-70.
    PMID: 26186833 DOI: 10.1016/j.ultsonch.2015.04.033
    Ultrasonic VialTweeter is used for the sonication of small volume samples. It contains a titanium block with 8 holes for vial insertion, to be used simultaneously for batch operation. In this investigation, the ultrasonic and sonochemical performance of ultrasonic VialTweeter has been evaluated at its different positions. Experimental results using calorimetry, ultrasonic capillary effect, sonochemiluminescence and degradation of Rhodamine B showed that the sonochemical activity differs greatly at different positions along the VialTweeter, with positions 3 and 4 showing the maximum efficiency whereas the positions 1 and 2 being the least effective positions. These results were further verified by acoustic pressure simulation, confirming that certain locations in the VialTweeter may not perform in the same way as others due to the variation in acoustic pressure at different locations.
  4. Wong SHM, Lim SS, Tiong TJ, Show PL, Zaid HFM, Loh HS
    Int J Mol Sci, 2020 Jul 22;21(15).
    PMID: 32708043 DOI: 10.3390/ijms21155202
    An ideal scaffold should be biocompatible, having appropriate microstructure, excellent mechanical strength yet degrades. Chitosan exhibits most of these exceptional properties, but it is always associated with sub-optimal cytocompatibility. This study aimed to incorporate graphene oxide at wt % of 0, 2, 4, and 6 into chitosan matrix via direct blending of chitosan solution and graphene oxide, freezing, and freeze drying. Cell fixation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, alkaline phosphatase colorimetric assays were conducted to assess cell adhesion, proliferation, and early differentiation of MG63 on chitosan-graphene oxide scaffolds respectively. The presence of alkaline phosphatase, an early osteoblast differentiation marker, was further detected in chitosan-graphene oxide scaffolds using western blot. These results strongly supported that chitosan scaffolds loaded with graphene oxide at 2 wt % mediated cell adhesion, proliferation, and early differentiation due to the presence of oxygen-containing functional groups of graphene oxide. Therefore, chitosan scaffolds loaded with graphene oxide at 2 wt % showed the potential to be developed into functional bone scaffolds.
  5. Lim MSW, Yang TC, Tiong TJ, Pan GT, Chong S, Yap YH
    Ultrason Sonochem, 2021 May;73:105490.
    PMID: 33609992 DOI: 10.1016/j.ultsonch.2021.105490
    Sequentially precipitated Mg-promoted nickel-silica catalysts with ageing performed under various ultrasonic intensities were employed to study the catalyst performance in the partial hydrogenation of sunflower oil. Results from various characterisation studies showed that increasing ultrasonic intensity caused a higher degree of hydroxycarbonate erosion and suppressed the formation of Ni silicates and silica support, which improved Ni dispersion, BET surface area and catalyst reducibility. Growth of silica clusters on the catalyst aggregates were observed in the absence of ultrasonication, which explained the higher silica and nickel silicate content on the outer surface of the catalyst particle. Application of ultrasound also altered the electron density of the Ni species, which led to higher activity and enhanced product selectivity for sonicated catalysts. The catalyst synthesised with ultrasonic intensity of 20.78 Wcm-2 achieved 22.6% increase in hydrogenation activity, along with 28.5% decrease in trans-C18:1 yield at IV = 70, thus supporting the feasibility of such technique.
  6. Tiong TJ, Chu JK, Lim LY, Tan KW, Hong Yap Y, Asli UA
    Ultrason Sonochem, 2019 Sep;56:46-54.
    PMID: 31101285 DOI: 10.1016/j.ultsonch.2019.03.026
    In the field of ultrasonic emulsification, the formation and cavitation collapse is one major factor contributing to the formation of micro- and nano-sized emulsion droplets. In this work, a series of experiments were conducted to examine the effects of varying the ultrasonic horn's position to the sizes of emulsion droplets formed, in an attempt to compare the influence of the simulated acoustic pressure fields to the experimental results. Results showed that the intensity of the acoustic pressure played a vital role in the formation of smaller emulsion droplets. Larger areas with acoustic pressure above the cavitation threshold in the water phase have resulted in the formation of smaller emulsion droplets ca. 250 nm and with polydispersity index of 0.2-0.3. Placing the ultrasonic horn at the oil-water interface has hindered the formation of small emulsion droplets, due to the transfer of energy to overcome the interfacial surface tension of oil and water, resulting in a slight reduction in the maximum acoustic pressure, as well as the total area with acoustic pressures above the cavitation threshold. This work has demonstrated the influence of the position of the ultrasonic horn in the oil and water system on the final emulsion droplets formed and can conclude the importance of generating acoustic pressure above the cavitation threshold to achieve small and stable oil-in-water emulsion.
  7. Chu JK, Tiong TJ, Chong S, Asli UA, Yap YH
    Ultrason Sonochem, 2021 Dec;80:105818.
    PMID: 34781044 DOI: 10.1016/j.ultsonch.2021.105818
    Recently, multi-frequency systems were reported to improve performance in power ultrasound applications. In line with this, digital prototyping of multi-frequency sonoreactors also started gaining interest. However, the conventional method of simulating multi-frequency acoustic pressure fields in the time-domain led to many challenges and limitations. In this study, a multi-frequency sonoreactor was characterised using frequency domain simulations in 2-D. The studied system consists of a hexagonal sonoreactor capable of operating at 28, 40 and 70 kHz. Four frequency combinations were studied: 28-40, 28-70, 40-70 and 28-40-70 kHz. A semi-empirical, modified Commander and Prosperetti model was used to describe the bubbly-liquid effects in the sonoreactor. The root-mean-squared acoustic pressure was compared against experimental validation results using sonochemiluminescence (SCL) images and was noted to show good qualitative agreement with SCL results in terms of antinode predictions. The empirical phase speed calculated from SCL measurements was found to be important to circumvent uncertainties in bubble parameter specifications which reduces error in the simulations. Additionally, simulation results also highlighted the importance of geometry in the context of optimising the standing wave magnitudes for each working frequency due to the effects of constructive and destructive interference.
  8. Manickam S, Abidin Nb, Parthasarathy S, Alzorqi I, Ng EH, Tiong TJ, et al.
    Ultrason Sonochem, 2014 Jul;21(4):1519-26.
    PMID: 24485395 DOI: 10.1016/j.ultsonch.2014.01.002
    Palm oil mill effluent (POME) is a highly contaminating wastewater due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD). Conventional treatment methods require longer residence time (10-15 days) and higher operating cost. Owing to this, finding a suitable and efficient method for the treatment of POME is crucial. In this investigation, ultrasound cavitation technology has been used as an alternative technique to treat POME. Cavitation is the phenomenon of formation, growth and collapse of bubbles in a liquid. The end process of collapse leads to intense conditions of temperature and pressure and shock waves which assist various physical and chemical transformations. Two different ultrasound systems i.e. ultrasonic bath (37 kHz) and a hexagonal triple frequency ultrasonic reactor (28, 40 and 70 kHz) of 15 L have been used. The results showed a fluctuating COD pattern (in between 45,000 and 60,000 mg/L) while using ultrasound bath alone, whereas a non-fluctuating COD pattern with a final COD of 27,000 mg/L was achieved when hydrogen peroxide was introduced. Similarly for the triple frequency ultrasound reactor, coupling all the three frequencies resulted into a final COD of 41,300 mg/L compared to any other individual or combination of two frequencies. With the possibility of larger and continuous ultrasonic cavitational reactors, it is believed that this could be a promising and a fruitful green process engineering technique for the treatment of POME.
  9. Tiong TJ, Liew DK, Gondipon RC, Wong RW, Loo YL, Lok MS, et al.
    Ultrason Sonochem, 2017 Mar;35(Pt B):569-576.
    PMID: 27156122 DOI: 10.1016/j.ultsonch.2016.04.029
    Coupling multiple frequencies in ultrasonic systems is one of the highly desired area of research for sonochemists, as it is known for producing synergistic effects on various ultrasonic reactions. In this study, the characteristics of a hexagonal-shaped triple frequency ultrasonic reactor with the combination frequencies of 28, 40 and 70kHz were studied. The results showed that uniform temperature increment was achieved throughout the reactor at all frequency combinations. On the other hand, sonochemiluminescence emission and degradation rate of Rhodamine B varies throughout different areas of the reactor, indicating the presence of acoustic 'hot spots' at certain areas of the reactor. Also, coupling dual and triple frequencies showed a decrease in the hydroxyl radical (OH) production, suggesting probable wave cancelling effect in the system. The results can therefore be served as a guide to optimize the usage of a triple frequency ultrasonic reactor for future applications.
  10. Liew YX, Chan YJ, Manickam S, Chong MF, Chong S, Tiong TJ, et al.
    Sci Total Environ, 2020 Apr 15;713:136373.
    PMID: 31954239 DOI: 10.1016/j.scitotenv.2019.136373
    Oil and grease, carbohydrate, protein, and lignin are the main constituents of high strength wastewaters such as dairy wastewater, cheese whey wastewater, distillery wastewater, pulp and paper mill wastewater, and slaughterhouse wastewaters. These constituents have contributed to various operational problems faced by the high-rate anaerobic bioreactor (HRAB). During the hydrolysis stage of anaerobic digestion (AD), these constituents can be hydrolyzed. Since hydrolysis is known to be the rate-limiting step of AD, the overall AD can be enhanced by improving the hydrolysis stage. This can be done by introducing pretreatment that targets the degradation of these constituents. This review mainly focuses on the biological pretreatment on various high-strength wastewaters by using different types of enzymes namely lipase, amylase, protease, and ligninolytic enzymes which are responsible for catalyzing the degradation of oil and grease, carbohydrate, protein, and lignin respectively. This review provides a summary of enzymatic systems involved in enhancing the hydrolysis stage and consequently improve biogas production. The results show that the use of enzymes improves the biogas production in the range of 7 to 76%. Though these improvements are highly dependent on the operating conditions of pretreatment and the types of substrates. Therefore, the critical parameters that would affect the effectiveness of pretreatment are also discussed. This review paper will serve as a useful piece of information to those industries that face difficulties in treating their high-strength wastewaters for the appropriate process, equipment selection, and design of an anaerobic enzymatic system. However, more intensive studies on the optimum operating conditions of pretreatment in a larger-scale and synergistic effects between enzymes are necessary to make the enzymatic pretreatment economically feasible.
  11. Yap YH, Lim MSW, Lee ZY, Lai KC, Jamaal MA, Wong FH, et al.
    Ultrason Sonochem, 2018 Jan;40(Pt A):57-67.
    PMID: 28946460 DOI: 10.1016/j.ultsonch.2017.06.032
    The utilisation of ultrasound in chemical preparation has been the focus of intense study in various fields, including materials science and engineering. This paper presents a novel method of synthesising the copper-manganese oxide (Hopcalite) catalyst that is used for the removal of volatile organic compounds and greenhouse gases like carbon monoxide. Several samples prepared under different conditions, with and without ultrasound, were subjected to a series of characterisation tests such as XRD, BET, FE-SEM, EDX, TPR-H2, TGA and FT-IR in order to establish their chemical and physical properties. A series of catalytic tests using a micro-reactor were subsequently performed on the samples in order to substantiate the aforementioned properties by analysing their ability to oxidise compressed natural gas (CNG), containing methane and sulphur dioxide. Results showed that ultrasonic irradiation of the catalyst led to observable alterations in its morphology: surfaces of the particles were noticeably smoothed and an increased in amorphicity was detected. Furthermore, ultrasonic irradiation has shown to enhance the catalytic activity of Hopcalite, achieving a higher conversion of methane relative to non-sonicated samples. Varying the ultrasonic intensity also produced appreciable effects, whereby an increase in intensity results in a higher conversion rate. The catalyst sonicated at the highest intensity of 29.7W/cm2has a methane conversion rate of 13.5% at 400°C, which was the highest among all the samples tested.
  12. Soh EYS, Lim SS, Chew KW, Phuang XW, Ho VMV, Chu KYH, et al.
    Environ Res, 2021 Nov 13.
    PMID: 34780790 DOI: 10.1016/j.envres.2021.112385
    The effluent of textile industries containing synthetic dyes contributed to substantial pollution to water bodies. The biosorption process of Congo Red dye was successfully performed by integrating ultrasonication in the adsorption step with spent brewery yeast as a novel and renewable biosorbent. The adsorption process was hindered when ultrasonication was employed together with the biosorbent, indicating that desorption process had occurred. The adsorption process showed that 4 g/L of biosorbent was the optimum dosage for adsorption of 50 mg/L of Congo Red dye, and that the adsorption equilibrium fitted to the Langmuir model, with kinetics best fitted with pseudo-second order model. The maximum capacity of the adsorption was 52.6 mg/g, showing the potential of spent brewery yeast to aid in removing wastewater pollutants. Maximal Congo Red dye recovery (100%) was achieved in the sonication-assisted desorption studies using 0.01M NaOH as the eluting agent. The ultrasonication effects contributed to the efficient recovery of dye and good conversion of spent brewery yeast to biosorbent can be beneficial for treating pollution from textile wastewater.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links