Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.
The most critical issues faced by the world nowadays is to provide the sustainability of consumption for energy and natural resources. Lignin is said to be one of the alternative new discoveries best-suited lignocellulosic biomass due to its low cost, sufficient availability and environmentally safe. The valuable properties exhibited by lignin can give broader applications usage such as in composite materials, wood industries, polymer composite industries, pharmaceutical and corrosion inhibitor industries. Many biomass wastes resources, isolation processes and treatments are undergoing development in order to enhance the producing new lignin-based materials on an industrial scale. Therefore, this review discussed on the current knowledge on the structure and chemistry of isolation of lignin from different sources using various common methods, its characterization, properties and its applications.
Over the past few years, nanocellulose (NC), cellulose in the form of nanostructures, has been proved to be one of the most prominent green materials of modern times. NC materials have gained growing interests owing to their attractive and excellent characteristics such as abundance, high aspect ratio, better mechanical properties, renewability, and biocompatibility. The abundant hydroxyl functional groups allow a wide range of functionalizations via chemical reactions, leading to developing various materials with tunable features. In this review, recent advances in the preparation, modification, and emerging application of nanocellulose, especially cellulose nanocrystals (CNCs), are described and discussed based on the analysis of the latest investigations (particularly for the reports of the past 3 years). We start with a concise background of cellulose, its structural organization as well as the nomenclature of cellulose nanomaterials for beginners in this field. Then, different experimental procedures for the production of nanocelluloses, their properties, and functionalization approaches were elaborated. Furthermore, a number of recent and emerging uses of nanocellulose in nanocomposites, Pickering emulsifiers, wood adhesives, wastewater treatment, as well as in new evolving biomedical applications are presented. Finally, the challenges and opportunities of NC-based emerging materials are discussed.
Nanostructured materials are fascinating since they are promising for intensely enhancing materials' performance, and they can offer multifunctional features. Creating such high-performance nanocomposites via effective and mild approaches is an inevitable requirement for sustainable materials engineering. Nanocomposites, which combine two-star nanomaterials, namely, cellulose nanofibrils (CNFs) and graphene derivatives (GNMs), have recently revealed interesting physicochemical properties and excellent performance. Despite numerous studies on the production and application of such systems, there is still a lack of concise information on their practical uses. In this review, recent progress in the production, modification, properties, and emerging uses of CNFs/GNMs hybrid-based nanocomposites in various fields such as flexible energy harvesting and storage, sensors, adsorbents, packaging, and thermal management, among others, are comprehensively examined and described based on recent investigations. Nevertheless, numerous challenges and gaps need to be addressed to successfully introduce such nanomaterials in large-scale industrial applications. This review will certainly help readers understand the design approaches and potential applications of CNFs/GNMs hybrid-based nanocomposites for which new research directions in this emerging topic are discussed.
Considering its widespread usage in various fields, such as food, pharmaceutical, medical, cosmetic and polymer composites industries, microcrystalline cellulose (MCC) is becoming impellent due to increasing demand of alternatives to non-renewable and scarce fossil materials. Although it still suffers from some drawbacks, MCC has recently gained more interest owing to its renewability, non-toxicity, economic value, biodegradability, high mechanical properties, high surface area and biocompatibility. New sources, new isolation processes, and new treatments are currently under development to satisfy the increasing demand of producing new types of MCC-based materials on an industrial scale. Therefore, this review assembles the current knowledge on the isolation of MCC from different sources using various procedures, its characterization, and its application in bio-composites. Challenges and future opportunities of MCC-based composites are discussed as well as obstacles remaining for their extensive uses.
Rust powder collected from an archeological iron was evaluated by complementary analyses such as FTIR, XRD, XRF, and SEM/EDX. The analyses revealed that lepidocrocite (L) was the major component in the archeological iron. Coconut husk (CH) can be classified as a type of lignocellulosic biomass of renewable resources that are widely available, especially in coastal areas. In this research, the isolated lignin extracted from CH is being studied as a potential alternative for environmentally friendly applications. The isolated lignin from soda and organosolv pulping went through several analyses such as FTIR, NMR (13C and 2D-HSQC), and TGA analyses. The analyses showed that lignin isolated via soda pulping has superior antioxidant capabilities due to its greater phenolic-OH content compared to lignin isolated from organosolv pulping. The effects of lignin concentrations, pH, and reaction time were utilized in rust conversion studies of an archeological iron. 5 wt% of soda lignin (SL) was revealed as the ideal condition in this rust conversion study with a value of 84.21 %. The treated rust powder with 5 wt% of SL was then further gone through several complementary analyses, which revealed that the treated rust had nearly transformed into an amorphous state.