METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment.
RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A.
CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.
DESIGN: Recommendations from a working group of international experts in macular degeneration outcomes registry development and patient advocates, facilitated by the International Consortium for Health Outcomes Measurement (ICHOM).
METHODS: Modified Delphi technique, supported by structured teleconferences, followed by online surveys to drive consensus decisions. Potential outcomes were identified through literature review of outcomes collected in existing registries and reported in major clinical trials. Outcomes were refined by the working group and selected based on impact on patients, relationship to good clinical care, and feasibility of measurement in routine clinical practice.
RESULTS: Standardized measurement of the following outcomes is recommended: visual functioning and quality of life (distance visual acuity, mobility and independence, emotional well-being, reading and accessing information); number of treatments; complications of treatment; and disease control. Proposed data collection sources include administrative data, clinical data during routine clinical visits, and patient-reported sources annually. Recording the following clinical characteristics is recommended to enable risk adjustment: age; sex; ethnicity; smoking status; baseline visual acuity in both eyes; type of macular degeneration; presence of geographic atrophy, subretinal fibrosis, or pigment epithelial detachment; previous macular degeneration treatment; ocular comorbidities.
CONCLUSIONS: The recommended minimum outcomes and pragmatic reporting standards should enable standardized, meaningful assessments and comparisons of macular degeneration treatment outcomes. Adoption could accelerate global improvements in standardized data gathering and reporting of patient-centered outcomes. This can facilitate informed decisions by patients and health care providers, plus allow long-term monitoring of aggregate data, ultimately improving understanding of disease progression and treatment responses.