A total of 32 clinical strains of Vibrio cholerae, including members of the 01 and 0139 serogroup
were collected from Klang, Selangor; Penang Island; Samarahan, Sarawak and Miri, Sarawak in Malaysia. In general, all the isolates except the 0139 serotype expressed low resistance to all the antibiotics tested with their Multiple Antibiotic Resistance (MAR) indices ranged from 0.10 to 0.48. The presence of ctx gene that encoded the cholera toxin was confirmed in all these clinical isolates by polymerase chain reaction. The results from the RAPD-PCR were analyzed using the RAPDistance software (Version 1.04). From the dendrogram generated, two main groups were observed which were subdivided into two clusters each. The Selangor’s isolates and the 0139 Penang’s isolates formed one group whereas the Samarahan, Sarawak isolates and the Miri, Sarawak isolates made up the other group, thus delineating their different sources of origin based on their geographical location.
A total of 112 burger patties (35 beef burger patties, 39 chicken burger patties and 38 fish burger patties) which are commercially available at retail level were investigated for the presence and number of Listeria monocytogenes. These samples were analyzed using MPN-PCR method and conventional culturing methods. L. monocytogenes was detected in 33.3% of chicken burger patties, 22.9% of beef patties, and 10.5% of fish patty samples. From all contaminated raw burger patties, the estimated count of L. monocytogenes was ranged from 3 to 75 MPN/g. The results suggest that burger act as a potential source of listeriosis if the contaminated burger patty is consumed without adequate cooking. The risk associated with consumption of these samples was found to be high particularly for processed food at retail level in Malaysia. Therefore, food manufacturers play an important role in monitoring the manufacturing process and conduct a periodical surveillance on microbiological quality assessment on the processing plants. Besides, there is a need to increase awareness of consumers and food handlers to practice proper cooking of the burger patties before the point of consumption, to reduce the risk of listeria infection.
Salmonella enterica is one of the major causes of bacterial foodborne infection. The aims of this study were to determine the antibiotic resistance and the genetic diversity of Salmonella enterica isolated from street foods and clinical samples and to understand the correlation between the prevalence of serovars and genotypes with their source (street food and clinical samples) and geographic origin (Negeri Sembilan, Malacca and Selangor in Peninsular Malaysia). The enterobacterial repetitive intergenic consensus (ERIC) PCR analysis distinguished the Salmonella isolates into 19 ERIC types, with one untypable isolate. Dendrograms were specifically constructed for the S. Biafra and S. Typhi isolates. Identical or very similar ERIC types among the S. Biafra isolates from street food samples indicate transmission of the S. Biafra among the street foods, as well as possible cross-contamination of the street foods. In addition, the identical or very similar ERIC types among the S. Typhi isolates from human samples examined suggest possible similarity in their source of infection. All the twenty four isolates were resistant to rifampin and none were resistant to cefuroxime. Most isolates displayed multiple resistances. Dendrogram of antibiotic resistances produced six clusters, with similarity levels between 18.8% and 100%. Generally, street food and clinical isolates tend to cluster apart. Dendrogram to cluster the antibiotic groups showed that they could be grouped according to classes based on mode of inhibition. The findings suggest that street food contaminated with drug-resistant Salmonella enterica can be an important factor in the continuous emergence of antibiotic resistant Salmonella enterica.
Broiler part samples (80 fresh and 80 chilled) were examined for the prevalence and numbers of C. jejuni and C. coli by employing most-probable-number (MPN) and polymerase chain reaction (PCR) techniques. The prevalence of the bacteria was high where C. jejuni was detected in 92.5% fresh and 53.8% chilled samples while C. coli in 80.0% fresh and 56.3% chilled. The number of these bacteria in the positive fresh and chilled samples was from 3 to more than 2400 MPN/g and from 3 to 290 MPN/g, respectively. Antibiotic resistance test (using Kirby-Bauer disc diffusion method) on 10 C. jejuni and 13 C. coli isolates toward ampicillin, tobramycin, enrofloxacin, ciprofloxacin, tetracycline, cephalothin, gentamicin and norfloxacin revealed high resistance toward all antibiotics (20.0% - 100.0%). All isolates were resistant to at least two antibiotics. This study highlights the potential of multidrug-resistant C. jejuni and C. coli transmission to humans through fresh and chilled broiler parts. Consecutive studies with bigger sample sizes and covering all over Malaysia are warranted in future.
A total of 78 samples comprising different types of street foods, sold in different locations in Malaysia, were examined for the presence of Enterobacter cloacae. E. cloacae contamination was recorded in 9% of the samples examined. Tests for susceptibility to 12 different antibiotics showed that all were resistant to six or more antibiotics, but susceptible to chloramphenicol and gentamicin. Plasmids of four different sizes were detected from the three plasmid positive isolates. RAPD analysis using four primers yielded completely different banding patterns for all E. cloacae studied. In Malaysia, no published information on street foods in the epidemiological investigation of E.cloacae related disease is available. However, their occurrences have provided compelling evidence that the risk of disease transmission caused by E. cloacae through street foods is moderate.
Studies indicate that bacterial cross-contamination occurs during food preparation where bacteria can retent on the food contact surfaces and cause illness. The study evaluated the adherence of Campylobacter spp. to cutting boards, blades of knives and hands after cutting chilled, raw broiler parts (thighs + drumsticks, wings and livers). The adherence to cucumber cuts that were cut using the unwashed boards and knives was also analyzed. Generally, utensils have higher mean of Campylobacter spp. retained to them (1.4-223.3 MPN/ml rinse) than hands (0.7-43.4 MPN/ml rinse); however, Mann-Whitney U test showed no significant differences in the bacterial numbers found among the different surfaces. The transfer rates of Campylobacter spp. from utensils to cucumber cuts varied from 0% to more than 100%. The bacteria detected could be from the utensils and cucumber contamination before purchase or due to other factors where further investigation is required. The possibility is there for Campylobacter to spread to contact surfaces during chilled broiler handling; therefore, utensils and hands involved should be washed thoroughly especially before ready-to-eat food preparation.
Listeria monocytogenes is a gram positive, facultative intracellular pathogen with the capacity to cause
food poisoning outbreaks as well as severe illness in vulnerable human population groups. It can cause a rare but serious disease called listeriosis with high fatality rates (20–30%) compared with other foodborne microbial pathogens. Although Listeria monocytogenes is infective to all human population groups, it is more likely to cause severe problems among pregnant women, immunocompromised individuals, the elderly and neonates. There are a variety of phenotyphic and genotyphic methods for the detection of Listeria monocytogenes in foods. Recent technological advances have increased the ability of scientists to detect Listeria monocytogenes. The purpose of this review is to discuss molecular characteristics of the Listeria monocytogenes pathogen, standard detection methods of this pathogen in foods based on culture methods, confirmation of species and subtyping based on phenotypic and genotyphic methods.
The aim of this study was to assess the most probable number-polymerase chain reaction (MPNPCR) technique for detection of Listeria monocytogenes in salad vegetables in comparison with reference EN ISO 11290-2 and Food Drug Administration Bacteriological Analytical Manual method using artificial and naturally contaminated samples. Based on recovery of L. monocytogenes from artificially contaminated samples, MPN-PCR showed a moderate correlation (R=0.67) between spiking concentration and microbial levels which was better than the FDA-BAM method (R=0.642) and ISO 11290-2:1998 method (R=0.655). With naturally contaminated samples, it was found that L. monocytogenes was detected in 25% of the vegetable samples using MPN-PCR; 15% of the samples by the FDA-BAM method and 8% of samples using ISO 11290-2:1998 method. Overall, MPN-PCR was found to be a rapid and reliable method that could facilitate the enumeration of L. monocytogenes in vegetables.
Three restriction enzymes were used in Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) using the mitochondrial cytochrome b region to establish a differential diagnosis which detect and discriminate between three meat species: pork, cow and chicken. DNA was extracted from samples containing meat of a single animal such as raw pork (Sus scrofa domesticus), chicken (Gallus gallus) and cow (Bos taurus) as well as mixed samples of two species of animals in different ratios. The amplified 359 base pairs (bp) portion of the mitochondrial cyt b gene from pure or mixed samples in different ratios was cut using three different restriction enzymes resulting in species specific restriction fragment length polymorphism (RFLP). This technique proved to be extremely reliable in detecting the presence of low levels of target DNA obtained from a 0.25 mg component in a particular mixed meat sample. This revealed the cyt b region as highly conserved and consequently a good molecular marker for diagnostic studies. Thus, this technique can be applied to food authentication for the identification of different species of animals in food products.
Bacillus cereus (B. cereus) isolates are toxigenic and can cause food poisoning. Cooked rice is
a potentially hazardous food, especially in tropical countries. The aim of this study was to determine the prevalence of B. cereus and B. thuringiensis in raw and cooked rice marketed in Selangor, Malaysia. In this research combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) was used to detect gyrB gene in B. cereus and B. thuringiensis. Five local varieties of raw rice samples were negative for B. thuringiensis but all (100%) were positive for B. cereus. A total of 115 cooked rice samples (nasi lemak, nasi briyani, nasi ayam and nasi putih) were studied for the presence of B. cereus and B. thuringiensis. Nasi ayam was found to have the highest prevalence (100%) of B. cereus compared to nasi putih (76.2%) and nasi lemak (70.4%). Nasi briyani had the lowest prevalence (50%) of B. cereus. The frequencies of B. thuringiensis were found to be 10, 30 and 35.2 % in nasi putih and nasi ayam, nasi briyani and nasi lemak, respectively. The range of B. cereus and B. thuringiensis in the samples was from < 3 to 1100 MPN/g in different samples. Maximum number of B. cereus was observed in nasi lemak, nasi briyani and nasi putih ( > 1100 MPN/g) while nasi ayam showed less contamination (460 MPN/g) with B. cereus which was significantly different (P < 0.05 ) from others. The number of B. thuringiensis in nasi lemak, nasi briyani, nasi putih and nasi ayam were found to be >1100, 93, 9.2 and 3.6 MPN/g, respectively.
This study was undertaken to characterize the antibiotic resistance and randomly amplified polymorphic DNA (RAPD) profiles of Vibrio parahaemolyticus isolates from raw vegetable samples. A total of 46 isolates of V. parahaemolyticus recovered from raw vegetables samples and were confirmed by PCR were analyzed in this study. Most of the isolates were resistant to nalidixic acid (93.48%) and were the least resistant towards imipinem (4.35%). The MAR index results also demonstrated high individual and multiple resistances to antibiotics among the isolates. From the RAPD analysis, the size for RAPD fragments generated ranged from 250 bp to 1,500 bp, with most of the strains contained three major gene fragments of 350, 1,000 and 1,350 bp. The RAPD profiles revealed a high level of DNA sequence diversity within the isolates. Antibiotic resistance and RAPD proved to be effective tools in characterizing and differentiating the V. parahaemolyticus strains.
Antibiotic resistance in campylobacter is an emerging global public health problem after MRSA and VRE. Fluoroquinolone and macrolide resistance have been found to be more common in this world leading foodborne pathogen. A total of fifty-six isolates of Campylobacter jejuni obtained from raw vegetables
which are consumed as ulam (salad) in Malaysia, were tested with 12 antibiotics used clinically and
agriculturally. The resistance was determined using the disk diffusion method. Results were determined
by hierarchic numerical methods to cluster strains and antibiotics according to similarity profiles. Fifty
five C. jejuni isolates from different isolation sites were all clustered together into ten groups. This indicates that the commodities (raw salad vegetables/ulam) where the isolates originated might share a similar source of cross-contamination along the production route. All antibiotics tested correlated and there were four groupings reflecting their mode of actions. Generally, C. jejuni isolates were found to be highly resistant to erythromycin (91.1%) and tetracycline (85.7%). Both agents are popular antibiotics used clinically to treat bacterial infections. On the other hand, the C. jejuni isolates showed high percentage (80.4%) of resistance towards enrofloxacin, an extensively used antimicrobial agent in agriculture practices. This study showed that C. jejuni isolates were highly multi-resistance to as many as 10 antibiotics. Therefore, in terms of biosafety, the presence of antibiotic resistance strains in the food chain has raised concerns that the treatment of human infections will be compromised.
Little is known on the biosafety level of Vibrio spp. in freshwater fish in Malaysia. The purpose of this study was to investigate the prevalence and concentration of Vibrio spp. and V. parahaemolyticus in
freshwater fish using the Most Probable Number-Polymerase Chain Reaction (MPN-PCR) method. The study was conducted on 150 samples from two types of freshwater fish commonly sold at hypermarkets, i.e. Pangasius hypophthalmus (catfish) and Oreochromis sp. (red tilapia). Sampling was done on the flesh, intestinal tract and gills of each fish. The prevalence of Vibrio spp. and V. parahaemolyticus was found to be 98.67% and 24% respectively with higher percentages detected in samples from the gills followed by the intestinal tract and flesh. Vibrio spp. was detected in almost all red tilapia and catfish samples. V. parahaemolyticus was detected in 25% of the catfish samples compared to 22.6% of red tilapia fish. The density of Vibrio spp. and V. parahaemolyticus in the samples ranged from 0 to 1.1x107 MPN/g. Although the maximum value was 1.1x107 MPN/g, most samples had microbial loads ranging from 0 to >104 MPN/g. The outcome on the biosafety assessment of Vibrio spp. and V. parahaemolyticus in freshwater fish indicates another potential source of food safety issues to consumers.
Recently, many cases related to viral gastroenteritis outbreaks have been reported all over the world. Noroviruses are found to be leading as the major cause of outbreaks of acute gastroenteritis. Patients with the acute gastroenteritis normally found to be positive with norovirus when stools and vomit were analyzed. This paper reviews various activities and previous reports that describe norovirus contaminated in various food matrixes and relationship between food handlers. Lately, a numbers of norovirus outbreaks have been reported which are involved fresh produce (such as vegetables, fruits), shellfish and prepared food. Food produces by infected food handlers may therefore easily contaminated. In addition, food that required much handling and have been eaten without heat treatment gave the high risk for getting foodborne illnesses. The standard method for detection of norovirus has already been available for stool samples. However, only few methods for detection of norovirus in food samples have been developed until now.
The purpose of this study was to investigate the biosafety of Vibrio parahaemolyticus in raw salad vegetables at wet market and supermarket in Malaysia. A combination of Most Probable Number - Polymerase Chain Reaction (MPN-PCR) method was applied to detect the presence of V. parahaemolyticus and to enumerate their density in the food samples. The study analyzed 276 samples of common vegetables eaten raw in Malaysia (Wild cosmos = 8; Japanese parsley = 21; Cabbage = 30; Lettuce = 16; Indian pennywort = 17; Carrot = 31; Sweet potato = 29; Tomato = 38; Cucumber = 28; Four winged bean = 26; Long bean = 32). The samples were purchased from two supermarkets (A and B) and two wet markets (C and D). The occurrence of V. parahaemolyticus detected was 20.65%, with higher frequency of V. parahaemolyticus in vegetables obtained from wet markets (Wet market C = 27.27%Wet Market D = 32.05%) compared to supermarkets (Supermarket A = 1.64%; Supermarket B = 16.67%). V. parahaemolyticus was most prevalent in Indian pennywort (41.18%). The density of V. parahaemolyticus in all the samples ranged from <3 up to >2400 MPN/g, mostly <3 MPN/g concentration. Raw vegetables from wet markets contained higher levels of V. parahaemolyticus compared to supermarkets. V. parahaemolyticus were present in raw vegetables although in low numbers. The results suggest that raw vegetables act as a transmission route for V. parahaemolyticus. This study will be the first biosafety assessment of V. parahaemolyticus in raw vegetables in Malaysia.