Displaying all 2 publications

Abstract:
Sort:
  1. Helbert, Turjaman M, Nara K
    PLoS One, 2019;14(9):e0221998.
    PMID: 31498844 DOI: 10.1371/journal.pone.0221998
    In Southeast Asia, primary tropical rainforests are usually dominated by ectomycorrhizal (ECM) trees belonging to Dipterocarpaceae, although arbuscular mycorrhizal trees often outcompete them after disturbances such as forest fires and clear-cutting, thus preventing dipterocarp regeneration. In some secondary tropical forests, however, potentially ECM trees belonging to Tristaniopsis (Myrtaceae) become dominant and may help ECM dipterocarp forests to recover. However, we have no information about their mycorrhizal status in these settings. In this study, we analyzed ECM fungal communities in tropical secondary forests dominated by Tristaniopsis and investigated which ECM fungal species are shared with other tropical or temperate areas. In total, 100 samples were collected from four secondary forests dominated by Tristaniopsis on Bangka Island. ECM tips in the soil samples were subjected to molecular analyses to identify both ECM and host species. Based on a >97% ITS sequence similarity threshold, we identified 56 ECM fungal species dominated by Thelephoraceae, Russulaceae, and Clavulinaceae. Some of the ECM fungal species were shared between dominant Tristaniopsis and coexisting Eucalyptus or Quercus trees, including 5 common to ECM fungi recorded in a primary mixed dipterocarp forest at Lambir Hill, Malaysia. In contrast, no ECM fungal species were shared with other geographical regions, even with Tristaniopsis in New Caledonia. These results imply that secondary tropical forests dominated by Tristaniopsis harbor diverse ECM fungi, including those that inhabit primary dipterocarp forests in the same geographical region. They may function as refugia for ECM fungi, given that dipterocarp forests are disappearing quickly due to human activity.
  2. Lee SY, Turjaman M, Mohamed R
    Trop Life Sci Res, 2018 Jul;29(2):13-28.
    PMID: 30112138 MyJurnal DOI: 10.21315/tlsr2018.29.2.2
    Indonesia is home to several tree taxa that are harvested for agarwood. This highly valuable oleoresin ironically was the cause for some species to become vulnerable due to gluttonous human activity. However, information on the genetic diversity of these endangered trees is limited. In this study, 28 specimens representing eight species from two genera, Aquilaria and Gyrinops, were collected from ex-situ and in-situ populations in Indonesia. Phylogenetic analysis conducted on DNA sequences of the nuclear ribosomal internal transcribed spacer (ITS) and the trnL-trnF intergenic spacer regions, revealed that Aquilaria and Gyrinops are paraphyletic when Aquilaria cumingiana is excluded. The phylogenetic analysis for ITS and trnL-trnF showed capability to categorise agarwood-producing species based on their regions: East Indonesia and West Indonesia, using Wallace's Line as the divider. In addition, we discuss challenges in species identification and taxonomy of agarwood-producing genera, and their conservation efforts in Indonesia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links