Displaying all 3 publications

Abstract:
Sort:
  1. Appaturi JN, Ratti R, Phoon BL, Batagarawa SM, Ud Din I, Selvaraj M, et al.
    Dalton Trans, 2021 Apr 21;50(15):5370.
    PMID: 33881103 DOI: 10.1039/d1dt90055b
    Correction for 'A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation' by Jimmy Nelson Appaturi et al., Dalton Trans., 2021, 50, 4445-4469, DOI: 10.1039/d1dt00456e.
  2. Alotaibi MA, Malik T, Naeem A, Khan AS, Ud Din I, Shaharun MS
    Heliyon, 2024 Nov 30;10(22):e40521.
    PMID: 39641067 DOI: 10.1016/j.heliyon.2024.e40521
    Deep eutectic solvents are a novel class of solvents that have gained much attention with time due to their biodegradability, non-volatility, non-toxicity and low-cost. In this work, a novel ternary deep eutectic solvent (TDES) was synthesized using ethaline (ChCl:EG) and glycine, with the addition of carboxylic acids. The synthesized material was characterized through Fourier-transform infrared spectroscopy (FTIR). While the thermal stability and physical properties such as density, viscosity, surface tension and refractive index were also determined). To estimate the critical properties, modified version of Lyderson-Joback-Reid (LJR) and Lee-Kesler mixing (Alkhatib et al., 2020) [1] methods were used. The density of the DES was calculated using the Spencer and Danner correlation and the obtained values were compared with experimental data. FTIR analysis confirmed that hydrogen bonding is the main driving force responsible for the formation of the deep eutectic solvents. The physical properties of the binary DES system, such as viscosity, density,and thermal stability of the system were enhanced after the incorporation of a third component (carboxylic acid) to the system. However, the surface tension of the TDES system decrease with the increasing amounts of the third component, likely due to increase in the void radius of the TDES. Thus investigation is considering as novel work to check the influence of carboxylic acids on the physical properties of binary deep eutectic solvent systems.
  3. Hamza MN, Tariqul Islam M, Lavadiya S, Ud Din I, Sanches B, Koziel S, et al.
    PLoS One, 2025;20(1):e0313874.
    PMID: 39787168 DOI: 10.1371/journal.pone.0313874
    Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors. Therefore, early detection is crucial as it enhances treatment outcomes and improves success rates. However, accurate diagnosis is challenging due to the inherent similarities between normal and cancerous cells. Although various techniques are available for blood cancer identification, high-frequency imaging techniques have recently shown promise, particularly for real-time monitoring. Notably, terahertz (THz) frequencies offer unique advantages for biomedical applications. This research proposes an innovative terahertz metamaterial-based biosensor for high-efficacy blood cancer detection. The proposed structure is ultra-compact and operates across five bands within the range of 0.6 to 1.2 THz. It is constructed using a polyethylene terephthalate (PET) dielectric layer and two aluminum (Al) layers, with the top layer serving as a base for the THz-range resonator. Careful design, architectural arrangement, and optimization of the geometry parameters allow for achieving nearly perfect absorption rates (>95%) across all operating bands. The properties of the proposed sensor are extensively evaluated through full-wave electromagnetic (EM) analysis, which includes assessing the refractive index and the distribution of the electric field at individual working frequencies. The suitability for blood cancer diagnosis has been validated by integrating the sensor into a microwave imaging (MWI) system and conducting comprehensive simulation studies. These studies underscore the device's capability to detect abnormalities, particularly in distinguishing between healthy and cancerous cells. Benchmarking against state-of-the-art biosensors in recent literature indicates that the proposed sensor is highly competitive in terms of major performance indicators while maintaining a compact size.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links