Displaying all 3 publications

Abstract:
Sort:
  1. Pathan RK, Uddin MA, Paul AM, Uddin MI, Hamd ZY, Aljuaid H, et al.
    PLoS One, 2023;18(8):e0290045.
    PMID: 37611023 DOI: 10.1371/journal.pone.0290045
    Monkeypox is a double-stranded DNA virus with an envelope and is a member of the Poxviridae family's Orthopoxvirus genus. This virus can transmit from human to human through direct contact with respiratory secretions, infected animals and humans, or contaminated objects and causing mutations in the human body. In May 2022, several monkeypox affected cases were found in many countries. Because of its transmitting characteristics, on July 23, 2022, a nationwide public health emergency was proclaimed by WHO due to the monkeypox virus. This study analyzed the gene mutation rate that is collected from the most recent NCBI monkeypox dataset. The collected data is prepared to independently identify the nucleotide and codon mutation. Additionally, depending on the size and availability of the gene dataset, the computed mutation rate is split into three categories: Canada, Germany, and the rest of the world. In this study, the genome mutation rate of the monkeypox virus is predicted using a deep learning-based Long Short-Term Memory (LSTM) model and compared with Gated Recurrent Unit (GRU) model. The LSTM model shows "Root Mean Square Error" (RMSE) values of 0.09 and 0.08 for testing and training, respectively. Using this time series analysis method, the prospective mutation rate of the 50th patient has been predicted. Note that this is a new report on the monkeypox gene mutation. It is found that the nucleotide mutation rates are decreasing, and the balance between bi-directional rates are maintained.
  2. Chowdhury MA, Shuvho MBA, Shahid MA, Haque AKMM, Kashem MA, Lam SS, et al.
    Environ Res, 2021 Jan;192:110294.
    PMID: 33022215 DOI: 10.1016/j.envres.2020.110294
    The rapid spread of COVID-19 has led to nationwide lockdowns in many countries. The COVID-19 pandemic has played serious havoc on economic activities throughout the world. Researchers are immensely curious about how to give the best protection to people before a vaccine becomes available. The coronavirus spreads principally through saliva droplets. Thus, it would be a great opportunity if the virus spread could be controlled at an early stage. The face mask can limit virus spread from both inside and outside the mask. This is the first study that has endeavoured to explore the design and fabrication of an antiviral face mask using licorice root extract, which has antimicrobial properties due to glycyrrhetinic acid (GA) and glycyrrhizin (GL). An electrospinning process was utilized to fabricate nanofibrous membrane and virus deactivation mechanisms discussed. The nanofiber mask material was characterized by SEM and airflow rate testing. SEM results indicated that the nanofibers from electrospinning are about 15-30 μm in diameter with random porosity and orientation which have the potential to capture and kill the virus. Theoretical estimation signifies that an 85 L/min rate of airflow through the face mask is possible which ensures good breathability over an extensive range of pressure drops and pore sizes. Finally, it can be concluded that licorice root membrane may be used to produce a biobased face mask to control COVID-19 spread.
  3. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links