Displaying all 3 publications

Abstract:
Sort:
  1. Uddin MJ, Khan WA, Amin NS
    PLoS One, 2014;9(6):e99384.
    PMID: 24927277 DOI: 10.1371/journal.pone.0099384
    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results.
  2. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2012;7(11):e49499.
    PMID: 23166688 DOI: 10.1371/journal.pone.0049499
    Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement.
  3. Uddin MJ, Khan WA, Ismail AI
    PLoS One, 2015;10(5):e0122663.
    PMID: 25933066 DOI: 10.1371/journal.pone.0122663
    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links