METHODS: The proposed approach outperformed the Autoregressive Integrated Moving Average (ARIMA) and Holt Winters models in all experiments for forecasting future values using COVID-19 and tourism datasets, with the lowest mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), and root mean squared error (RMSE). The SARIMA model predicts COVID-19 and tourist arrivals with and without the COVID-19 pandemic with less than 5% MAPE error.
RESULTS: The suggested method provides a dashboard that shows COVID-19 and tourism-related information to end users. The suggested tool can be deployed in the healthcare, tourism, and government sectors to monitor the number of COVID-19 cases and determine the correlation between COVID-19 cases and tourism.
CONCLUSION: Management in the tourism industries and stakeholders are expected to benefit from this study in making decisions about whether or not to keep funding a given tourism business. The datasets, codes, and all the experiments are available for further research, and details are included in the appendix.
METHODS: According to a review of the literature, general practitioners (GPs) rarely investigate any anomalies in liver function tests to the level indicated by national standards. The authors have used data pre-processing in this work. The collection has 30691 records with 11 attributes. The classification model is utilized to construct an effective prediction system to aid general practitioners in identifying a liver patient using data mining.
RESULTS: The collected results indicate that both the Naïve Bayes and C4.5 Decision Tree models give accurate predictions. However, given the C4.5 model offers more accurate predictions than the Naïve Bayes model, it can be assumed that the C4.5 model is superior for this research. Consequently, the liver patient prediction system will be developed using the rules given by the C4.5 Decision Tree model in order to predict the patient class. The training set, suggested data mining with a classification model achieved 99.36% accuracy and on the testing set, 98.40% accuracy. On the training set, the enhanced accuracy relative to the current system was 29.5, while on the test set, it was 28.73. In compared to state-of-the-art models, the proposed approach yields satisfactory outcomes.
CONCLUSION: The proposed technique offers a variety of data visualization and user interface options, and this type of platform can be used as an early diagnosis tool for liver-related disorders in the healthcare sector. This study suggests a machine learning-based technique for predicting liver disease. The framework includes a user interface via which healthcare providers can enter patient information.