Displaying all 3 publications

Abstract:
Sort:
  1. Utama GL, Dio C, Sulistiyo J, Yee Chye F, Lembong E, Cahyana Y, et al.
    Saudi J Biol Sci, 2021 Dec;28(12):6765-6773.
    PMID: 34866975 DOI: 10.1016/j.sjbs.2021.07.051
    β-glucan is a natural polysaccharide derivative composed of a group of glucose monomers with β-glycoside bonds that can be synthesized intra- or extra-cellular by various microorganisms such as yeasts, bacteria, and moulds. The study aimed to discover the potential of various microorganisms such as Saccharomyces cerevisiae, Aspergillus oryzae, Xanthomonas campestris, and Bacillus natto in producing β-glucan. The experimental method used and the data were analyzed descriptively. The four microorganisms above were cultured under a submerged state in Yeast glucose (YG) broth for 120 h at 30 °C with 200 rpm agitation. During the growth, several parameters were examined including total population by optical density, the pH, and glucose contents of growth media. β-glucan was extracted using acid-alkaline methods from the growth media then the weight was measured. The results showed that S. cerevisiae, A. oryzae X. campestris, and B. natto were prospective for β-glucans production in submerged fermentation up to 120 h. The highest β-glucans yield was shown by B. natto (20.38%) with the β-glucans mass of 1.345 ± 0.08 mg and globular diameter of 600 μm. The highest β-glucan mass was achieved by A. oryzae of 82.5 ± 0.03 mg with the total population in optical density of 0.1246, a final glucose level of 769 ppm, the pH of 6.67, and yield of 13.97% with a globular diameter of 1400 μm.
  2. Sharma V, Chaudhary AA, Bawari S, Gupta S, Mishra R, Khan SU, et al.
    Front Pharmacol, 2024;15:1414790.
    PMID: 39246660 DOI: 10.3389/fphar.2024.1414790
    Cancer prevention is currently envisioned as a molecular-based approach to prevent carcinogenesis in pre-cancerous stages, i.e., dysplasia and carcinoma in situ. Cancer is the second-leading cause of mortality worldwide, and a more than 61% increase is expected by 2040. A detailed exploration of cancer progression pathways, including the NF-kβ signaling pathway, Wnt-B catenin signaling pathway, JAK-STAT pathway, TNF-α-mediated pathway, MAPK/mTOR pathway, and apoptotic and angiogenic pathways and effector molecules involved in cancer development, has been discussed in the manuscript. Critical evaluation of these effector molecules through molecular approaches using phytomolecules can intersect cancer formation and its metastasis. Manipulation of effector molecules like NF-kβ, SOCS, β-catenin, BAX, BAK, VEGF, STAT, Bcl2, p53, caspases, and CDKs has played an important role in inhibiting tumor growth and its spread. Plant-derived secondary metabolites obtained from natural sources have been extensively studied for their cancer-preventing potential in the last few decades. Eugenol, anethole, capsaicin, sanguinarine, EGCG, 6-gingerol, and resveratrol are some examples of such interesting lead molecules and are mentioned in the manuscript. This work is an attempt to put forward a comprehensive approach to understanding cancer progression pathways and their management using effector herbal molecules. The role of different plant metabolites and their chronic toxicity profiling in modulating cancer development pathways has also been highlighted.
  3. Bose R, Jayawant M, Raut R, Lakkakula J, Roy A, Alghamdi S, et al.
    Front Pharmacol, 2023;14:1218867.
    PMID: 37601050 DOI: 10.3389/fphar.2023.1218867
    The field of cancer nanotheranostics is rapidly evolving, with cyclodextrin (CD)-based nanoparticles emerging as a promising tool. CDs, serving as nanocarriers, have higher adaptability and demonstrate immense potential in delivering powerful anti-cancer drugs, leading to promising and specific therapeutic outcomes for combating various types of cancer. The unique characteristics of CDs, combined with innovative nanocomplex creation techniques such as encapsulation, enable the development of potential theranostic treatments. The review here focuses mainly on the different techniques administered for effective nanotheranostics applications of CD-associated complex compounds in the domain of cancer treatments. The experimentations on various loaded drugs and their complex conjugates with CDs prove effective in in vivo results. Various cancers can have potential nanotheranostics cures using CDs as nanoparticles along with a highly efficient process of nanocomplex development and a drug delivery system. In conclusion, nanotheranostics holds immense potential for targeted drug delivery and improved therapeutic outcomes, offering a promising avenue for revolutionizing cancer treatments through continuous research and innovative approaches.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links