Displaying all 3 publications

Abstract:
Sort:
  1. Chin SC, Abdullah N, Siang TW, Wan HY
    J Microbiol, 2005 Jun;43(3):251-6.
    PMID: 15995642
    In this study, we assessed the susceptibility of 12 Lactobacillus strains, all of which had been isolated from the gastrointestinal tracts of chicken, to three antibiotics (chloramphenicol, erythromycin and tetracycline) used commonly as selective markers in transformation studies of lactic acid bacteria. Among these strains, 17%, 58%, and 25% were found to exhibit a high degree of resistance to 200 microg/ml of tetracycline, erythromycin, and chloramphenicol, respectively. Seven of the 12 Lactobacillus strains exhibiting resistance to at least 50 microg/ml of chloramphenicol or erythromycin, and five strains exhibiting resistance to at least 50 microg/ml of tetracycline, were subsequently subjected to plasmid curing with chemical curing agents, such as novobiocin, acriflavin, SDS, and ethidium bromide. In no cases did the antibiotic resistance of these strains prove to be curable, with the exception of the erythromycin resistance exhibited by five Lactobacillus strains (L. acidophilus I16 and I26, L. fermentum I24 and C17, and L. brevis C10). Analysis of the plasmid profiles of these five cured derivatives revealed that all of the derivatives, except for L. acidophilus I16, possessed profiles similar to those of wild-type strains. The curing of L. acidophilus I16 was accompanied by the loss of 4.4 kb, 6.1 kb, and 11.5 kb plasmids.
  2. Ling LS, Mohamad R, Rahim RA, Wan HY, Ariff AB
    J Microbiol, 2006 Aug;44(4):439-46.
    PMID: 16953180
    In this study, the growth kinetics of Lactobacillus rhamnosus and lactic acid production in continuous culture were assessed at a range of dilution rates (0.05 h(-1) to 0.40 h(-1)) using a 2 L stirred tank fermenter with a working volume of 600 ml. Unstructured models, predicated on the Monod and Luedeking-Piret equations, were employed to simulate the growth of the bacterium, glucose consumption, and lactic acid production at different dilution rates in continuous cultures. The maximum specific growth rate of L. rhamnosus, mu-max, was estimated at 0.40 h(-1), and the Monod cell growth saturation constant, Ks, at approximately 0.25 g/L. Maximum cell viability (1.3 x 10(10) CFU/ml) was achieved in the dilution rate range of D = 0.28 h(-1) to 0.35 h(-1). Both maximum viable cell yield and productivity were achieved at D = 0.35 h(-1). The continuous cultivation of L. rhamnosus at D = 0.35 h(-1) resulted in substantial improvements in cell productivity, of 267% (viable cell count) that achieved via batch cultivation.
  3. Ming LC, Halim M, Rahim RA, Wan HY, Ariff AB
    Food Sci Biotechnol, 2016;25(5):1393-1398.
    PMID: 30263421 DOI: 10.1007/s10068-016-0217-1
    The potential use of fed-batch cultivation (FBC) for improvement of the production of Lactobacillus salivarius I 24 biomass for subsequent use as probiotics was studied using a 2-L stirredtank bioreactor. Three different constant feeding rates (0.1, 0.05, and 0.033 L/h) were applied in FBCs and their effect on carbon metabolism was evaluated. The carbon flux for cell built-up with reduction in lactic acid synthesis was observed in the fed-batch as compared to the batch cultivation mode. The viable cell number obtained in the constant FBC (CFBC) operated at a feeding rate of 0.05 L/h was 8 times higher (10.7×1010 CFU/mL) than that recorded in the batch cultivation. This gave the viable cell yield based on glucose consumed for CFBC of 26 times higher (11.3×1012 CFU/gGlucose) than the batch cultivation. This study demonstrated CFBC, which is simple with minimal use of process control equipment, has an industrial potential for improvement of probiotic production.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links