The application of computer and machines for agricultural production has been one of the outstanding
developments in Malaysian agriculture, especially in overcoming labour shortages in Oil Palm plantations. The on-line automated weedicide sprayer system was developed at Universiti Putra
Malaysia to locate the existence and intensity of weeds in real-time environment and to spray the
weedicides automatically and precisely. During the start of the spraying operation, the web camera
will initially capture the image of weeds. The computer programme will compute the red, green, blue (RGB) values in the form of computer pixel. These values will be used as reference RGB values to be compared with the RGB values of the weeds captured real-time during the spraying operation. The sprayer nozzle will be turned ‘on’ or ‘off’, depending on the percentage or intensity of the green colour pixel value of weeds. The sprayer valve will open the nozzle/s when the camera detected the presence of weeds. The purpose is to reduce wastage, reduce labour, reduce cost, and control environment hazard.
Vapour pressure deficit (VPD) analysis introduces an approach to develop a better basis for the control of the environment of lowland greenhouses in Malaysia. The study of vapour pressure deficit (VPD) is to show air moisture conditions for plant production while taking into account different temperature levels. The purpose of this project is to develop a real-time automatic temperature and relative humidity control system in the lowland tropical greenhouse using a PIC16f876A microcontroller. The controller will then be used to monitor the temperature, relative humidity and VPD in the planting of Chili Kulai (Titisan 15). The fertigation system was introduced to the greenhouse to fertilize and irrigate the plant as well as to provide moisture to the environment. A swamp cooler was used to bring down the temperature and increase moisture content in the greenhouse. Ventilators were installed to remove the heat in the greenhouse. The study was carried out in an experimental greenhouse located at the Institute of Advanced Technology, Universiti Putra Malaysia (UPM).
This paper describes the design and development of harvesting system for the gantry system to harvest eggplants. For this purpose, the harvesting robot was successfully designed and fabricated for the gantry system to harvest eggplants. The operation of the harvester was controlled by Programmable Logic Controller (PLC). Basically, the limit switches, DC motor, and relay are connected to the PLC. Meanwhile, a PLC ladder diagram was designed and developed to control the operation of the eggplant harvester. A visual basic programme was developed to interface the harvester with a greenhouse gantry control system. A videogrammetry method was employed to calculate the distance between the stems of eggplants and the cutter of robot end effector. The end effector used electric as its power source and it was controlled via Programmable Logic Controller (PLC). Visual Basic Programme was developed to interface the harvester with the gantry control system. The accuracy of the videogrammetry was tested to be 67.2% for X-axis, 88.2% for Y-axis and 84.7% for Z-axis. Meanwhile, the speed of the end effector for harvester is 2.4 km/h and it could lift up to 55 cm. In order to determine detachment force of eggplant, 16 samples of mature eggplants were tested in a greenhouse, and as a result, more than 22.76 N force was needed to detach a mature eggplant inside the gantry system.