The susceptibility levels of Malaysian Aedes albopictus larvae sampled from several agricultural, fogging-free residential and dengue prone residential areas against different larvicides were evaluated using revised diagnostic doses derived from the 2xLC99 values of the reference strain. Upon 24-hour recovery period of WHO larval bioassay, incipient resistance was observed among Ae. albopictus larvae from rubber estates against fenitrothion (96.67% mortality) and permethin (97.00% mortality) while Ae. albopictus larvae from rice cultivation areas were moderately resistant to fenthion (94.33% mortality). Aedes albopictus larvae from dengue prone residential areas developed moderate to high resistance against dichlorodiphenyltrichloroethane (DDT), fenitrothion, fenthion, propoxur and permethrin (79.67% - 97.33% mortality). Moderate to high resistance were also demonstrated among all populations of Ae. albopictus larvae against temephos and chlorpyrifos (63.00% - 97.67% mortality). Except for Ae. albopictus larvae from oil palm plantations, all Ae. albopictus larval populations were also highly resistant to bendiocarb (65.67% - 89.67% mortality). Cross resistance between larvicides from similar and different insecticide classes were also revealed in this study. The use of revised diagnostic doses established from the local reference strain could reduce the possibility of underestimation or overestimation of the insecticide susceptibility status of field strain populations.
Aedes albopictus larvae obtained from different types of agricultural and non-agricultural localities in Peninsular Malaysia were subjected to several larvicides at World Health Organization (WHO) recommended dosages. Upon 24 h of WHO larval bioassay using two organochlorines and six organophosphates, high resistance against dichlorodiphenyltrichloroethane (DDT), temephos, chlorpyrifos and bromophos were demonstrated among all larval populations. Aedes albopictus larvae from both paddy growing areas (92.33% mortality) and rubber estates (97.00% mortality) were moderately resistant to dieldrin while only Ae. albopictus larvae from dengue prone residential areas (89.00% mortality) showed high resistance against dieldrin. All Ae. albopictus larval populations also developed either incipient or high resistance to both malathion (33.67%-95.33% mortality) and fenitrothion (73.00%-92.67% mortality). Only Ae. albopictus larvae from fogging-free residential areas that were tolerant to fenthion (97.33% mortality), whereas Ae. albopictus larvae from dengue prone residential areas were highly resistant to the same organophosphate (88.33% mortality). Cross resistance between intraclass and interclass larvicides of organochlorines and organophosphates were also exhibited in this study. The present study provided baseline data on various susceptibility levels of Ae. albopictus larval populations from different types of agricultural and non-agricultural localities against organochlorines and organophosphates at WHO recommended dosages. Nevertheless, further susceptibility investigations are suggested using revised doses of larvicides established from the local reference strain of Ae. albopictus to prevent the underestimation or overestimation of insecticide resistance level among Ae. albopictus field strains of larvae.
Ovitrap surveillance was initiated for eight continuous weeks to determine the distribution and abundance of Aedes sp. mosquitoes in the University of Malaya campus, Kuala Lumpur, and the impact of meteorological conditions on the Aedes populations. Two study areas within the campus were selected: Varsity Lake and Seventh Residential College. The abundance of Aedes populations in Varsity Lake was indicated by ovitrap index (OI) which ranged from 60.00%-90.00%. The mean number of larvae per ovitrap of Aedes albopictus in Varsity Lake ranged from 11.23+/-2.42-43.80+/-6.22. On the other hand, the outdoor OI for Seventh Residential College ranged from 73.33%-93.33%, respectively, while the mean number larvae per ovitrap for this area ranged from 19.33+/-4.55-35.27+/-5.46, respectively. In addition, the indoor OI of Seventh Residential College ranged from 0.00%-30.00%, while the mean number of larvae per ovitrap for Ae. albopictus ranged from 0-5.90+/-3.55. There was no significant difference (p>0.05) of Ae. albopictus population between Varsity Lake and Seventh Residential College. The studies showed a correlation between OI and mean number of larvae per ovitrap for outdoor Ae. albopictus populations in Varsity Lake and Seventh Residential College (r=0.794). There was also a correlation between the mean larvae number per ovitrap of Ae. albopictus obtained from eight weeks indoor ovitrap surveillance in Seventh Residential College with rainfall (r=0.584). However, there was no correlation between the mean larvae number per ovitrap of Ae. albopictus in both study areas with temperature and relative humidity. Aedes aegypti mosquitoes were found neither indoor nor outdoor in both study areas. This study indicated that the principal dengue vector in the university campus was most likely Ae. albopictus.
The resistance status towards permethrin among the laboratory strain, the permethrin-selected strain and four field strains of Culex quinquefasciatus collected in Kuala Lumpur, Malaysia was determined using three standard laboratory methods: WHO larval bioassay, WHO adult bioassay and biochemical microplate assay. Cx. quinquefasciatus permethrin-selected strain larvae were the least susceptible to permethrin with a resistance ratio of 47.28-folds, whereas all field strain larvae of the same species were tolerant to permethrin with resistance ratios of more than 3-folds. In contrast, in adult stage, the permethrin exposed permethrin-selected strain (resistance ratio = 1.27) was found to be more susceptible to permethrin than all permethrin-exposed field strains (resistance ratios = 2.23-2.48). Complete mortalities for all strains of Cx. quinquefasciatus adults proved the effectiveness of the synergist; piperonyl butoxide (PBO). For the biochemical microplate assay, the reduction of the mean optical density of elevated oxidase activity of three field strains upon exposure to PBO confirmed the association between oxidase activity and permethrin tolerance. On the other hand, irregular patterns of the mean optical density of elevated oxidase activity in the laboratory strain, permethrin-selected strain and Jalan Fletcher strain illustrated the gene variation within these mosquito colonies as well as the involvement of other enzyme activities in the permethrin resistance occurred.
Surveillance of mosquitoes and their distribution in association with rainfall, relative humidity, and temperature were conducted in selected suburban and forested areas, namely, Sungai Penchala (Kuala Lumpur) and Taman Alam (Selangor) for 12 months. Armigeres kesseli was the most abundant species in Sungai Penchala while Aedes butleri was the most dominant species in Taman Alam. A positive correlation between mosquito distribution and rainfall was observed in selected mosquito species in Sungai Penchala (Armigeres kesseli, r = 0.75; Armigeres subalbatus, r = 0.62; and Aedes albopictus, r = 0.65) and Taman Alam (Armigeres sp, r = 0.59; Ae. butleri, r = 0.85; and Ae. albopictus, r = 0.62). However, no significant cor- relation was found either between selected mosquito species in both study areas and relative humidity or temperature. Results obtained suggested that vector control programs to be conducted based on temporal distribution of vectors in order to achieve beneficial outcomes with effective costing.
A preliminary study on the vertical dispersal of Aedes populations in high-rise apartments was carried out in Presint 9, Putrajaya, Malaysia. Ovitraps were placed indoors within four blocks of high-rise apartments from the ground floors (0.0 - 3.0 m) until up to the tenth floors (28.1 - 30.0 m). Aedes aegypti was the dominant species found in the ovitraps (87.85%), while Aedes albopictus was found in lower numbers. From total number of larvae collected (650), 40.92% of these larvae were obtained from the fourth block; Block D. The peak density of Aedes sp. was observed at level 6 (16.1 - 18.0 m), while Ae. aegypti was found until the tenth floor (28.1 - 30.0 m). In contrast, Ae. albopictus was found only up to the sixth floor (16.1 - 18.0 m). A poor correlation of the mean number of Aedes larvae collected with the level of high-rise apartments occupied (N=40; ρ=-0.349) was also observed which indicated the possibility of lesser Aedes populations to be found at higher level of high-rise apartments. Therefore, larger scale studies are strongly recommended to examine the vertical dispersal of Aedes mosquitoes.
Temephos is the World Health Organization (WHO) recommended larvicide and is still being utilized worldwide to control larvae of dengue vectors; Aedes aegypti and Aedes albopictus. The efficacy of a commercial temephos product; Temebate® to exterminate the local populations of Ae. albopictus larvae originated from different land use particularly dengue-risk and dengue-free housing localities as well as agrarian localities including oil palm plantations, rubber estates and paddy fields was assessed to verify its bioefficacy in these localities. Field populations of Ae. albopictus larvae were attained via a larval survey at each study locality. Each Ae. albopictus larval population was subjected to a 24-h larval bioassay using Temebate® at operational dosage of 1 mg/L. Almost all Ae. albopictus larval populations demonstrated mortalities between 7.00% and 100.00% by the end of the first 4 h of Temebate® exposure with the resistance ratios between 0.94 and 8.33. After 24 h of Temebate® exposure, all sixteen Ae. albopictus larval populations exhibited increased mortalities with ten of them showing 100% mortalities. These results confirmed the relevance of Temebate® to be continuously used by the residents of these localities as their control efforts against dengue vectors. Nevertheless, Temebate® application by consumers in dengue-risk localities need to be carefully monitored to prevent further development of temephos resistance among Ae. albopictus populations and substantiated with other vector control approaches.
The present study establishes insecticide susceptibility profiles of Aedes albopictus adult populations from 4 hot springs in Selangor, Malaysia, against 7 pyrethroids through an adult mosquito susceptibility bioassay. All Ae. albopictus populations were subjected to a 1-h exposure to each pyrethroid following the World Health Organization. The mortalities were recorded at 60 min of exposure to bifenthrin, 30 min for other pyrethroids, and 24 h posttreatment for all pyrethroids. Complete mortalities were observed upon exposures to the pyrethroids under 60 min and at 24 h posttreatment, excluding permethrin 0.25%, alpha-cypermethrin 0.05%, and bifenthrin 0.2%. These findings indicated that permethrin, deltamethrin, lambda-cyhalothrin, cyfluthrin, and etofenprox possess the recommended pyrethroid adulticide active ingredients that could be applied in vector control programs at these hot springs in the future. Nevertheless, the application of pyrethroids should be carefully monitored in rotation with other insecticide classes, including organophosphates and carbamates to avoid the development of insecticide resistance among mosquito vectors towards all insecticides. Although there were no reported cases of Aedes-borne pathogens at these hot springs to date, the current study results could still assist the Malaysian health authorities in determining approaches to control Aedes populations in these hot springs, if required in the future.