Displaying all 3 publications

Abstract:
Sort:
  1. Sayyed RZ, Wani SJ, Alyousef AA, Alqasim A, Syed A, El-Enshasy HA
    PLoS One, 2019;14(6):e0212324.
    PMID: 31211775 DOI: 10.1371/journal.pone.0212324
    Poly-β-hydroxybutyrate (PHB) depolymerase is known to decompose PHB, biodegradable polymers and therefore has great commercial significance in the bioplastic sector. However, reports on PHB depolymerases from isolates obtained from plastic-contaminated sites that reflect the potential of the source organism is scarce. In this study, we evaluated the production of extracellular PHB depolymerase from Microbacterium paraoxydans RZS6 isolated from the plastic-contaminated site in the municipal area of Shahada, Maharashtra, India, for the first time. The isolate was identified using 16S rRNA gene sequencing, gas chromatographic analysis of fatty acid methyl esters (GC-FAME), and BIOLOG method. Ithydrolyzed PHB on minimal salt medium (MSM) containing PHB as the only source of carbon. The isolate produced PHB depolymerase at 45°C during 48 h of incubation. The enzyme was purified most efficiently using octyl-sepharose CL-4B column, with the highest purification yield of 6.675 Umg-1mL-1. The activity of the enzyme was enhanced in the presence of Ca2+ and Mg2+ ions but inhibited by Fe2+ (1 mM) ions and mercaptoethanol (1000 rpm). the nzyme kinetic analysis revealed that the enzyme was a metalloenzyme; requiring Mg2+ ions, that showed optimum enzyme activity at 30°C (mesophilic) and under neutrophilic (pH 7) conditions. Scale-up from the shake-flask level to a laboratory-scale bioreactor further enhanced the enzyme yield by 0.809 UmL-1. The molecular weight of the enzyme (40 kDa), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, closely resembled the PHB depolymerase of Aureobacterium saperdae. Our findings highlighted the applicability of M. paraoxydans as a producer of extracellular PHB depolymerase having potential of degrading PHB under diverse conditions.
  2. Sayyed RZ, Wani SJ, Alarfaj AA, Syed A, El-Enshasy HA
    PLoS One, 2020;15(1):e0220095.
    PMID: 31910206 DOI: 10.1371/journal.pone.0220095
    There are numerous reports on poly-β-hydroxybutyrate (PHB) depolymerases produced by various microorganisms isolated from various habitats, however, reports on PHB depolymerase production by an isolate from plastic rich sites scares. Although PHB has attracted commercial significance, the inefficient production and recovery methods, inefficient purification of PHB depolymerase and lack of ample knowledge on PHB degradation by PHB depolymerase have hampered its large scale commercialization. Therefore, to ensure the biodegradability of biopolymers, it becomes imperative to study the purification of the biodegrading enzyme system. We report the production, purification, and characterization of extracellular PHB depolymerase from Stenotrophomonas sp. RZS7 isolated from a dumping yard rich in plastic waste. The isolate produced extracellular PHB depolymerase in the mineral salt medium (MSM) at 30°C during 4 days of incubation under shaking. The enzyme was purified by three methods namely ammonium salt precipitation, column chromatography, and solvent purification. Among these purification methods, the enzyme was best purified by column chromatography on the Octyl-Sepharose CL-4B column giving optimum yield (0.7993 Umg-1mL-1). The molecular weight of purified PHB depolymerase was 40 kDa. Studies on the assessment of biodegradation of PHB in liquid culture medium and under natural soil conditions confirmed PHB biodegradation potential of Stenotrophomonas sp. RZS7. The results obtained in Fourier-Transform Infrared (FTIR) analysis, High-Performance Liquid Chromatography (HPLC) study and Gas Chromatography Mass-Spectrometry (GC-MS) analysis confirmed the biodegradation of PHB in liquid medium by Stenotrophomonas sp. RZS7. Changes in surface morphology of PHB film in soil burial as observed in Field Emission Scanning Electron Microscopy (FESEM) analysis confirmed the biodegradation of PHB under natural soil environment. The isolate was capable of degrading PHB and it resulted in 87.74% biodegradation. A higher rate of degradation under the natural soil condition is the result of the activity of soil microbes that complemented the biodegradation of PHB by Stenotrophomonas sp. RZS7.
  3. Sayyed RZ, Shaikh SS, Wani SJ, Rehman MT, Al Ajmi MF, Haque S, et al.
    Molecules, 2021 Apr 22;26(9).
    PMID: 33922162 DOI: 10.3390/molecules26092443
    The present study was aimed to evaluate the suitability of agro-wastes and crude vegetable oils for the cost-effective production of poly-β-hydroxybutyrate (PHB), to evaluate growth kinetics and PHB production in Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 with these carbon substrates and to study the biodegradation of PHB accumulated by these cultures. Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1 accumulates higher amounts of PHB corn (79.90% of dry cell mass) and rice straw (66.22% of dry cell mass) medium respectively. The kinetic model suggests that the Pseudomonas sp. RZS1 follows the Monod model more closely than A. faecalis RZS4. Both the cultures degrade their PHB extract under the influence of PHB depolymerase. Corn waste and rice straw appear as the best and cost-effective substrates for the sustainable production of PHB from Alcaligenes faecalis RZS4 and Pseudomonas sp. RZS1. The biopolymer accumulated by these organisms is biodegradable in nature. The agro-wastes and crude vegetable oils are good and low-cost sources of nutrients for the growth and production of PHB and other metabolites. Their use would lower the production cost of PHB and the low-cost production will reduce the sailing price of PHB-based products. This would promote the large-scale commercialization and popularization of PHB as an ecofriendly bioplastic/biopolymer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links