Displaying all 3 publications

Abstract:
Sort:
  1. Wilson JJ, Sing KW, Lee PS, Wee AK
    Conserv Biol, 2016 10;30(5):982-9.
    PMID: 27341687 DOI: 10.1111/cobi.12787
    Over the past 50 years, Tropical East Asia has lost more biodiversity than any tropical region. Tropical East Asia is a megadiverse region with an acute taxonomic impediment. DNA barcodes are short standardized DNA sequences used for taxonomic purposes and have the potential to lessen the challenges of biodiversity inventory and assessments in regions where they are most needed. We reviewed DNA barcoding efforts in Tropical East Asia relative to other tropical regions. We suggest DNA barcodes (or metabarcodes from next-generation sequencers) may be especially useful for characterizing and connecting species-level biodiversity units in inventories encompassing taxa lacking formal description (particularly arthropods) and in large-scale, minimal-impact approaches to vertebrate monitoring and population assessments through secondary sources of DNA (invertebrate derived DNA and environmental DNA). We suggest interest and capacity for DNA barcoding are slowly growing in Tropical East Asia, particularly among the younger generation of researchers who can connect with the barcoding analogy and understand the need for new approaches to the conservation challenges being faced.
  2. Yamamoto T, Tsuda Y, Mori GM, Cruz MV, Shinmura Y, Wee AK, et al.
    Appl Plant Sci, 2016 Sep;4(9).
    PMID: 27672519 DOI: 10.3732/apps.1600042
    PREMISE OF THE STUDY: Twenty-seven nuclear microsatellite markers were developed for the mangrove fern, Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant.

    METHODS AND RESULTS: Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively.

    CONCLUSIONS: The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants.

  3. Wee AK, Takayama K, Chua JL, Asakawa T, Meenakshisundaram SH, Onrizal, et al.
    BMC Evol. Biol., 2015 Mar 29;15:57.
    PMID: 25888261 DOI: 10.1186/s12862-015-0331-3
    BACKGROUND: Mangrove forests are ecologically important but globally threatened intertidal plant communities. Effective mangrove conservation requires the determination of species identity, management units, and genetic structure. Here, we investigate the genetic distinctiveness and genetic structure of an iconic but yet taxonomically confusing species complex Rhizophora mucronata and R. stylosa across their distributional range, by employing a suite of 20 informative nuclear SSR markers.

    RESULTS: Our results demonstrated the general genetic distinctiveness of R. mucronata and R. stylosa, and potential hybridization or introgression between them. We investigated the population genetics of each species without the putative hybrids, and found strong genetic structure between oceanic regions in both R. mucronata and R. stylosa. In R. mucronata, a strong divergence was detected between populations from the Indian Ocean region (Indian Ocean and Andaman Sea) and the Pacific Ocean region (Malacca Strait, South China Sea and Northwest Pacific Ocean). In R. stylosa, the genetic break was located more eastward, between populations from South and East China Sea and populations from the Southwest Pacific Ocean. The location of these genetic breaks coincided with the boundaries of oceanic currents, thus suggesting that oceanic circulation patterns might have acted as a cryptic barrier to gene flow.

    CONCLUSIONS: Our findings have important implications on the conservation of mangroves, especially relating to replanting efforts and the definition of evolutionary significant units in Rhizophora species. We outlined the genetic structure and identified geographical areas that require further investigations for both R. mucronata and R. stylosa. These results serve as the foundation for the conservation genetics of R. mucronata and R. stylosa and highlighted the need to recognize the genetic distinctiveness of closely-related species, determine their respective genetic structure, and avoid artificially promoting hybridization in mangrove restoration programmes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links