Design charettes have been utilized in architectural and design practice to generate innovative ideas. The Reimagining Workshop is a version that combines practical and blue-sky thinking to improve healthcare facility design. The workshop engages diverse stakeholders who follow a human-centered design framework. The Reimagining the Neonatal Intensive Care Unit workshop sought to generate ideas for the future, optimal NICU without specific site or client constraints. Key themes include family-centered care, technology-enabled care, neighborhood and village design and investing in the care team. Recommendations include a supportive physical environment, celebrating milestones, complementary and alternative medicine, enhancing the transition of care, aiding the transition period, and leveraging technology. The workshop showcased the potential for transformative change in NICU design and provided a roadmap for future advancements. These findings can inform regulatory standards for NICU design and drive improvements in family-centered care, patient experiences, and outcomes within the NICU environment.
We generalize a simple Monte Carlo (MC) model for dilute gases to consider the transport behavior of positrons and electrons in Percus-Yevick model liquids under highly nonequilibrium conditions, accounting rigorously for coherent scattering processes. The procedure extends an existing technique [Wojcik and Tachiya, Chem. Phys. Lett. 363, 381 (2002)], using the static structure factor to account for the altered anisotropy of coherent scattering in structured material. We identify the effects of the approximation used in the original method, and we develop a modified method that does not require that approximation. We also present an enhanced MC technique that has been designed to improve the accuracy and flexibility of simulations in spatially varying electric fields. All of the results are found to be in excellent agreement with an independent multiterm Boltzmann equation solution, providing benchmarks for future transport models in liquids and structured systems.
The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.
Absolute total electron scattering cross sections (TCS) for nitrobenzene molecules with impact energies from 0.4 to 1000 eV have been measured by means of two different electron-transmission experimental arrangements. For the lower energies (0.4-250 eV) a magnetically confined electron beam system has been used, while for energies above 100 eV a linear beam transmission technique with high angular resolution allowed accurate measurements up to 1000 eV impact energy. In both cases random uncertainties were maintained below 5-8%. Systematic errors arising from the angular and energy resolution limits of each apparatus are analysed in detail and quantified with the help of our theoretical calculations. Differential elastic and integral elastic, excitation and ionisation as well as momentum transfer cross sections have been calculated, for the whole energy range considered here, by using an independent atom model in combination with the screening corrected additivity rule method including interference effects (IAM-SCARI). Due to the significant permanent dipole moment of nitrobenzene, additional differential and integral rotational excitation cross sections have been calculated in the framework of the Born approximation. If we ignore the rotational excitations, our calculated total cross section agrees well with our experimental results for impact energies above 15 eV. Additionally, they overlap at 10 eV with the low energy Schwinger Multichannel method with Pseudo Potentials (SMCPP) calculation available in the literature (L. S. Maioli and M. H. F. Bettega, J. Chem. Phys., 2017, 147, 164305). We find a broad feature in the experimental TCS at around 1.0 eV, which has been related to the formation of the NO2- anion and assigned to the π*(b1) resonance, according to previous mass spectra available in the literature. Other local maxima in the TCSs are found at 4.0 ± 0.2 and 5.0 ± 0.2 eV and are assigned to core excited resonances leading to the formation of the NO2- and O2- anions, respectively. Finally, for energies below 10 eV, differences found between the present measurements, the SMCPP calculation and our previous data for non-polar benzene have revealed the importance of accurately calculating the rotational excitation contribution to the TCS before comparing theoretical and experimental data. This comparison suggests that our dipole-Born calculation for nitrobenzene overestimates the magnitude of the rotational excitation cross sections below 10 eV.
We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20-50 eV, while the scattered electron was detected in the 10°-90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, "rotationally averaged" elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].
In this Review, we present a comparative study between electron and positron scattering cross sections from CO2 molecules over a broad impact energy range (0.1-5000 eV). For electron scattering, new total electron scattering cross sections (e-TCS) have been measured with a high resolution magnetically confined electron beam transmission system from 1 to 200 eV. Dissociative electron attachment processes for electron energies from 3 to 52 eV have been analyzed by measuring the relative O- anion production yield. In addition, elastic, inelastic, and total scattering cross section calculations have been carried out in the framework of the Independent Atom Model by using the Screening Corrected Additive Rule, including interference effects (IAM-SCARI). Based on the previous cross section compilation from Itikawa ( J. Phys. Chem. Ref. Data, 2002, 31, 749-767) and the present measurements and calculations, an updated recommended e-TCS data set has been used as reference values to obtain a self-consistent integral cross section data set for the elastic and inelastic (vibrational excitation, electronic excitation, and ionization) scattering channels. A similar calculation has been carried out for positrons, which shows important differences between the electron scattering behavior: e.g., more relevance of the target polarization at the lower energies, more efficient excitation of the target at intermediate energies, but a lower total scattering cross section for increasing energies, even at 5000 eV. This result does not agree with the charge independence of the scattering cross section predicted by the first Born approximation (FBA). However, we have shown that the inelastic channels follow the FBA's predictions for energies above 500 eV while the elastic part, due to the different signs of the scattering potential constituent terms, remains lower for positrons even at the maximum impact energy considered here (5000 eV). As in the case of electrons, a self-consistent set of integral positron scattering cross sections, including elastic and inelastic (vibrational excitation, electronic excitation, positronium formation, and ionization) channels is provided. Again, to derive these data, positron scattering total cross sections based on a previous compilation from Brunger et al. ( J. Phys. Chem. Ref. Data, 2017, 46, 023102) and the present calculation have been used as reference values. Data for the main inelastic channels, i.e. direct ionization and positronium formation, derived with this procedure, show excellent agreement with the experimental results available in the literature. Inconsistencies found between different model potential calculations, both for the elastic and inelastic collision processes, suggest that new calculations using more sophisticated methods are required.
Electron scattering cross sections for pyridine in the energy range 0-100 eV, which we previously measured or calculated, have been critically compiled and complemented here with new measurements of electron energy loss spectra and double differential ionization cross sections. Experimental techniques employed in this study include a linear transmission apparatus and a reaction microscope system. To fulfill the transport model requirements, theoretical data have been recalculated within our independent atom model with screening corrected additivity rule and interference effects (IAM-SCAR) method for energies above 10 eV. In addition, results from the R-matrix and Schwinger multichannel with pseudopotential methods, for energies below 15 eV and 20 eV, respectively, are presented here. The reliability of this complete data set has been evaluated by comparing the simulated energy distribution of electrons transmitted through pyridine, with that observed in an electron-gas transmission experiment under magnetic confinement conditions. In addition, our representation of the angular distribution of the inelastically scattered electrons is discussed on the basis of the present double differential cross section experimental results.