Displaying all 8 publications

Abstract:
Sort:
  1. Meijaard E, Sherman J, Ancrenaz M, Wich SA, Santika T, Voigt M
    Curr. Biol., 2018 11 05;28(21):R1241-R1242.
    PMID: 30399343 DOI: 10.1016/j.cub.2018.09.052
    A recent report, published by the Government of Indonesia with support from the Food and Agricultural Organization and Norway's International Climate and Forest Initiative, states that orangutan populations (Pongo spp.) have increased by more than 10% in Indonesia from 2015 to 2017, exceeding the government target of an annual 2% population increase [1]. This assessment is in strong contrast with recent publications that showed that the Bornean orangutan (P. pygmaeus) lost more than 100,000 individuals in the past 16 years [2] and declined by at least 25% over the past 10 years [3]. Furthermore, recent work has also demonstrated that both Sumatran orangutans (P. abelii) and the recently described Tapanuli orangutan (P. tapanuliensis) lost more than 60% of their key habitats between 1985 and 2007, and ongoing land use changes are expected to result in an 11-27% decline in their populations by 2020 [4,5]. Most scientific data indicate that the survival of these species continues to be seriously threatened by deforestation and killing [4,6,7] and thus all three are Critically Endangered under the International Union for Conservation of Nature's Red List.
  2. Spehar SN, Sheil D, Harrison T, Louys J, Ancrenaz M, Marshall AJ, et al.
    Sci Adv, 2018 06;4(6):e1701422.
    PMID: 29963619 DOI: 10.1126/sciadv.1701422
    Conservation benefits from understanding how adaptability and threat interact to determine a taxon's vulnerability. Recognizing how interactions with humans have shaped taxa such as the critically endangered orangutan (Pongo spp.) offers insights into this relationship. Orangutans are viewed as icons of wild nature, and most efforts to prevent their extinction have focused on protecting minimally disturbed habitat, with limited success. We synthesize fossil, archeological, genetic, and behavioral evidence to demonstrate that at least 70,000 years of human influence have shaped orangutan distribution, abundance, and ecology and will likely continue to do so in the future. Our findings indicate that orangutans are vulnerable to hunting but appear flexible in response to some other human activities. This highlights the need for a multifaceted, landscape-level approach to orangutan conservation that leverages sound policy and cooperation among government, private sector, and community stakeholders to prevent hunting, mitigate human-orangutan conflict, and preserve and reconnect remaining natural forests. Broad cooperation can be encouraged through incentives and strategies that focus on the common interests and concerns of different stakeholders. Orangutans provide an illustrative example of how acknowledging the long and pervasive influence of humans can improve strategies to preserve biodiversity in the Anthropocene.
  3. Runting RK, Meijaard E, Abram NK, Wells JA, Gaveau DL, Ancrenaz M, et al.
    Nat Commun, 2015 04 14;6:6819.
    PMID: 25871635 DOI: 10.1038/ncomms7819
    Balancing economic development with international commitments to protect biodiversity is a global challenge. Achieving this balance requires an understanding of the possible consequences of alternative future scenarios for a range of stakeholders. We employ an integrated economic and environmental planning approach to evaluate four alternative futures for the mega-diverse island of Borneo. We show what could be achieved if the three national jurisdictions of Borneo coordinate efforts to achieve their public policy targets and allow a partial reallocation of planned land uses. We reveal the potential for Borneo to simultaneously retain ∼50% of its land as forests, protect adequate habitat for the Bornean orangutan (Pongo pygmaeus) and Bornean elephant (Elephas maximus borneensis), and achieve an opportunity cost saving of over US$43 billion. Such coordination would depend on enhanced information sharing and reforms to land-use planning, which could be supported by the increasingly international nature of economies and conservation efforts.
  4. Santika T, Ancrenaz M, Wilson KA, Spehar S, Abram N, Banes GL, et al.
    Sci Rep, 2017 07 07;7(1):4839.
    PMID: 28687788 DOI: 10.1038/s41598-017-04435-9
    For many threatened species the rate and drivers of population decline are difficult to assess accurately: species' surveys are typically restricted to small geographic areas, are conducted over short time periods, and employ a wide range of survey protocols. We addressed methodological challenges for assessing change in the abundance of an endangered species. We applied novel methods for integrating field and interview survey data for the critically endangered Bornean orangutan (Pongo pygmaeus), allowing a deeper understanding of the species' persistence through time. Our analysis revealed that Bornean orangutan populations have declined at a rate of 25% over the last 10 years. Survival rates of the species are lowest in areas with intermediate rainfall, where complex interrelations between soil fertility, agricultural productivity, and human settlement patterns influence persistence. These areas also have highest threats from human-wildlife conflict. Survival rates are further positively associated with forest extent, but are lower in areas where surrounding forest has been recently converted to industrial agriculture. Our study highlights the urgency of determining specific management interventions needed in different locations to counter the trend of decline and its associated drivers.
  5. Nater A, Mattle-Greminger MP, Nurcahyo A, Nowak MG, de Manuel M, Desai T, et al.
    Curr. Biol., 2017 Nov 20;27(22):3487-3498.e10.
    PMID: 29103940 DOI: 10.1016/j.cub.2017.09.047
    Six extant species of non-human great apes are currently recognized: Sumatran and Bornean orangutans, eastern and western gorillas, and chimpanzees and bonobos [1]. However, large gaps remain in our knowledge of fine-scale variation in hominoid morphology, behavior, and genetics, and aspects of great ape taxonomy remain in flux. This is particularly true for orangutans (genus: Pongo), the only Asian great apes and phylogenetically our most distant relatives among extant hominids [1]. Designation of Bornean and Sumatran orangutans, P. pygmaeus (Linnaeus 1760) and P. abelii (Lesson 1827), as distinct species occurred in 2001 [1, 2]. Here, we show that an isolated population from Batang Toru, at the southernmost range limit of extant Sumatran orangutans south of Lake Toba, is distinct from other northern Sumatran and Bornean populations. By comparing cranio-mandibular and dental characters of an orangutan killed in a human-animal conflict to those of 33 adult male orangutans of a similar developmental stage, we found consistent differences between the Batang Toru individual and other extant Ponginae. Our analyses of 37 orangutan genomes provided a second line of evidence. Model-based approaches revealed that the deepest split in the evolutionary history of extant orangutans occurred ∼3.38 mya between the Batang Toru population and those to the north of Lake Toba, whereas both currently recognized species separated much later, about 674 kya. Our combined analyses support a new classification of orangutans into three extant species. The new species, Pongo tapanuliensis, encompasses the Batang Toru population, of which fewer than 800 individuals survive. VIDEO ABSTRACT.
  6. Voigt M, Wich SA, Ancrenaz M, Meijaard E, Abram N, Banes GL, et al.
    Curr. Biol., 2018 03 05;28(5):761-769.e5.
    PMID: 29456144 DOI: 10.1016/j.cub.2018.01.053
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT.
  7. Wijedasa LS, Jauhiainen J, Könönen M, Lampela M, Vasander H, Leblanc MC, et al.
    Glob Chang Biol, 2017 03;23(3):977-982.
    PMID: 27670948 DOI: 10.1111/gcb.13516
  8. Slik JW, Arroyo-Rodríguez V, Aiba S, Alvarez-Loayza P, Alves LF, Ashton P, et al.
    Proc. Natl. Acad. Sci. U.S.A., 2015 Jun 16;112(24):7472-7.
    PMID: 26034279 DOI: 10.1073/pnas.1423147112
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links