Displaying all 6 publications

Abstract:
Sort:
  1. Norbäck D, Hashim JH, Hashim Z, Wieslander G
    Int J Environ Health Res, 2024 Jan;34(1):213-224.
    PMID: 36335594 DOI: 10.1080/09603123.2022.2143482
    We studied associations between fractional exhaled nitric oxide (FeNO), health and household exposure among school children (N = 348) in Penang, Malaysia. Multiple logistic regression and linear mixed models were applied. Overall, 46.0% had elevated FeNO (>20 ppb) and 10.6% diagnosed asthma. Male gender (p = 0.002), parental asthma or allergy (p = 0.047), cat allergy (p = 0.009) and seafood allergy (p 
  2. Norbäck D, Hashim JH, Hashim Z, Cai GH, Sooria V, Ismail SA, et al.
    Sci Total Environ, 2017 Jan 15;577:148-154.
    PMID: 27802882 DOI: 10.1016/j.scitotenv.2016.10.148
    Few health studies exist on dampness and mould in schools in the tropics. We studied associations between fraction of exhaled nitric oxide (FeNO), respiratory symptoms and airway infections among students and dampness and fungal DNA in schools in Malaysia. A total of 368 randomly selected students from 32 classrooms in 8 secondary schools in Penang, Malaysia, participated (58% participation rate). Information on current respiratory symptoms and the home environment was collected by a standardised questionnaire. FeNO was measured by NIOX MINO (50ml/min). The classrooms were inspected and dust was collected by vacuuming on special filters and was analysed for five fungal DNA sequences by quantitative PCR. Linear mixed models and 3-level multiple logistic regression (school, classroom, student) were applied adjusting for demographic data and the home environment. Totally 10.3% reported doctor's diagnosed asthma, 15.1% current wheeze, 12.4% current asthma, 37.3% daytime breathlessness, 10.2% nocturnal breathlessness, 38.9% airway infections and 15.5% had pollen or furry pet allergy. The geometric mean of FeNO was 19.9ppb and 45% had elevated FeNO (>20ppb). Boys had higher levels of FeNO. Chinese had less daytime breathlessness than Malay (OR=0.30: p<0.001). Indoor carbon dioxide levels were low (380-720ppm). Dampness was observed in 18% of the classrooms and was associated with respiratory infections (OR=3.70; 95% CI 1.14-12.1) and FeNO (p=0.04). Aspergillus versicolor DNA was detected in 67% of the classrooms. Higher numbers of Aspergillus versicolor DNA in classroom dust were associated with wheeze (p=0.006), current asthma (p=0.002), respiratory infections (p=0.005) and elevated FeNO levels (p=0.02). In conclusion, respiratory symptoms were common among the students and the high FeNO levels indicate ongoing airway inflammation. Building dampness and the mould Aspergillus versicolor in schools in Malaysia can be risk factors for impaired respiratory health among the students.
  3. Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail SA, Wieslander G
    Int J Hyg Environ Health, 2017 06;220(4):697-703.
    PMID: 28254266 DOI: 10.1016/j.ijheh.2017.01.016
    BACKGROUND: There are few studies on ocular effects of indoor mould exposure in schools, especially in the tropics OBJECTIVE: To study associations between eye symptoms and tear film break up time (BUT) in students and demographic data and fungal DNA in schools.

    METHODS: A school environment study was performed among randomly selected students in eight randomly selected secondary schools in Penang, Malaysia. Information on eye symptoms and demographic data was collected by a standardised questionnaire. BUT was measured by two methods, self-reported BUT (SBUT) and by the non-invasive Tearscope (NIBUT). Dust was collected by vacuuming in 32 classrooms and analysed for five fungal DNA sequences. Geometric mean (GM) for total fungal DNA was 7.31*104 target copies per gram dust and for Aspergillus/Penicillium DNA 3.34*104 target copies per gram dust. Linear mixed models and 3-level multiple logistic regression were applied adjusting for demographic factors.

    RESULTS: A total of 368 students (58%) participated and 17.4% reported weekly eye symptoms the last 3 months. The median SBUT and TBUT were 15 and 12s, respectively. Students wearing glasses (OR 2.41, p=0.01) and with a history of atopy (OR=2.67; p=0.008) had more eye symptoms. Girls had less eye symptoms than boys (OR=0.34; p=0.006) Indoor carbon dioxide in the classrooms was low (range 380-720ppm), temperature was 25-30°C and relative air humidity 70-88%. Total fungal DNA in vacuumed dust was associated with shorter SBUT (4s shorter per 105 target copies per gram dust; p=0.04) and NIBUT (4s shorter per 105 target copies per gram dust; p<0.001). Aspergillus/Penicillium DNA was associated with shorter NIBUT (5s shorter per 105 target copies per gram dust; p=0.01).

    CONCLUSION: Fungal contamination in schools in a tropical country can be a risk factor for impaired tear film stability among students.

  4. Sun Y, Zhang M, Ou Z, Meng Y, Chen Y, Lin R, et al.
    Eur Respir J, 2022 Nov;60(5).
    PMID: 35618276 DOI: 10.1183/13993003.00260-2022
    BACKGROUND: Indoor microbial exposure is associated with asthma, but the health effects of indoor metabolites and chemicals have not been comprehensively assessed.

    METHODS: We collected classroom dust from 24 junior high schools in three geographically distanced areas in Malaysia (Johor Bahru, Terengganu and Penang), and conducted culture-independent high-throughput microbiome and untargeted metabolomics/chemical profiling.

    RESULTS: 1290 students were surveyed for asthma symptoms (wheeze). In each centre, we found significant variation in the prevalence of wheeze among schools, which could be explained by personal characteristics and air pollutants. Large-scale microbial variations were observed between the three centres; the potential protective bacteria were mainly from phyla Actinobacteria in Johor Bahru, Cyanobacteria in Terengganu and Proteobacteria in Penang. In total, 2633 metabolites and chemicals were characterised. Many metabolites were enriched in low-wheeze schools, including plant secondary metabolites flavonoids/isoflavonoids (isoliquiritigenin, formononetin, astragalin), indole and derivatives (indole, serotonin, 1H-indole-3-carboxaldehyde), and others (biotin, chavicol). A neural network analysis showed that the indole derivatives were co-occurring with the potential protective microbial taxa, including Actinomycetospora, Fischerella and Truepera, suggesting these microorganisms may pose health effects by releasing indole metabolites. A few synthetic chemicals were enriched in high-wheeze schools, including pesticides (2(3H)-benzothiazolethione), fragrances (2-aminobenzoic acid, isovaleric acid), detergents and plastics (phthalic acid), and industrial materials (4,4-sulfonyldiphenol).

    CONCLUSIONS: This is the first association study between high-throughput indoor chemical profiling and asthma symptoms. The consistent results from the three centres indicate that indoor metabolites/chemicals could be a better indicator than the indoor microbiome for environmental and health assessments, providing new insights for asthma prediction, prevention and control.

  5. Fu X, Du B, Meng Y, Li Y, Zhu X, Ou Z, et al.
    PMID: 36883483 DOI: 10.1039/d2em00480a
    Rhinitis is one of the most prevalent chronic diseases globally. Microbiome exposure affects the occurrence of rhinitis. However, previous studies did not differentiate allergic rhinitis (AR) and non-allergic rhinitis (NAR) in the microbial association analysis. In this study, we investigate 347 students in 8 junior high schools, Terengganu, Malaysia, who were categorized as healthy (70.9%), AR (13.8%) and NAR (15.3%) based on a self-administered questionnaire and skin prick tests of pollen, pet, mould and house dust mite allergens. Classroom microbial and metabolite exposure in vacuumed dust was characterized by PacBio long-read amplicon sequencing, quantitative PCR and LC-MS-based untargeted metabolomics. Our findings indicate a similar microbial association pattern between AR and NAR. The richness in Gammaproteobacteria was negatively associated with AR and NAR symptoms, whereas total fungal richness was positively associated with AR and NAR symptoms (p < 0.05). Brasilonema bromeliae and Aeromonas enteropelogenes were negatively associated with AR and NAR, and Deinococcus was positively associated with AR and NAR (p < 0.01). Pipecolic acid was protectively associated with AR and NAR symptoms (OR = 0.06 and 0.13, p = 0.009 and 0.045). A neural network analysis showed that B. bromeliae was co-occurring with pipecolic acid, suggesting that the protective role of this species may be mediated by releasing pipecolic acid. Indoor relative humidity and the weight of vacuum dust were associated with AR and NAR, respectively (p < 0.05), but the health effects were mediated by two protective bacterial species, Aliinostoc morphoplasticum and Ilumatobacter fluminis. Overall, our study reported a similar microbial association pattern between AR and NAR and also revealed the complex interactions between microbial species, environmental characteristics, and rhinitis symptoms.
  6. Norbäck D, Hashim JH, Hashim Z, Jalaludin J, Ismail R, Wieslander G, et al.
    J Asthma, 2024 Dec;61(12):1772-1780.
    PMID: 39066997 DOI: 10.1080/02770903.2024.2383627
    OBJECTIVE: To study associations between fractional exhaled nitric oxide (FeNO) and asthma, airway symptoms, sensitization to common allergens, outdoor pollution and home environment among 380 students in eight junior high schools in two areas in Indonesia.

    METHODS: Data on health and home were collected by a face-to face interview before measuring FeNO and performing skin prick test against common allergens. Exploratory linear mixed and logistic regression models were employed.

    RESULTS: Geometric mean of FeNO was 17.8 ppb (GSD 2.09) and 139 students (36.6%) had elevated FeNO (>20 ppb). In total, 107 students (28.2%) were sensitized to house dust mite (HDM) (Der p1 or Der f1), 4 (1.1%) to cat and 3 (0.8%) to mold (Cladosporium or Alternaria). Moreover, 20 students (5.3%) had diagnosed asthma, 38 (10.0%) had current wheeze, and 107 (28.2%) had current rhinitis. HDM sensitization, diagnosed asthma, current wheeze, and current rhinitis were associated with FeNO. In total, 281 students (73.9%) had mold or dampness, 232 (61.1%) had environmental tobacco smoke (ETS) and 43 (11.3%) had other odor at home. Indoor mold or dampness and other odor at home were associated with FeNO. ETS was negatively associated with FeNO.

    CONCLUSION: HDM sensitization and elevated FeNO can be common among children in this part of Indonesia. The high prevalence of elevated FeNO indicate that undiagnosed childhood asthma is common. Dampness, mold and odor at home can be associated with increased FeNO while ETS can be associated with decreased FeNO.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links