Displaying all 2 publications

Abstract:
Sort:
  1. Wong WR, Sekaran SD, Adikan FR, Berini P
    Biosens Bioelectron, 2016 Apr 15;78:132-9.
    PMID: 26599483 DOI: 10.1016/j.bios.2015.11.030
    The non-structural 1 (NS1) protein of the dengue virus circulates in infected patients' blood samples and can be used for early diagnosis of dengue infection. In this paper, we present the detection of naturally-occurring dengue NS1 antigen in infected patient blood plasma using straight long-range surface plasmon waveguides. Three commercially-available anti-NS1 monoclonal antibodies were used for recognition and their performance was compared and discussed. A similar figure of merit to the one used in conventional dengue NS1 capture using an enzyme-linked immunosorbent assay (ELISA) was applied to our results. In general, the positive patient samples can be clearly differentiated from the negative ones and the results agree with those obtained using ELISA. The largest signal-to-noise ratio observed during the experiments was 356 and the best detection limit observed is estimated as 5.73 pg/mm(2).
  2. Wong WR, Krupin O, Sekaran SD, Mahamd Adikan FR, Berini P
    Anal Chem, 2014 Feb 4;86(3):1735-43.
    PMID: 24410440 DOI: 10.1021/ac403539k
    We present a compact, cost-effective, label-free, real-time biosensor based on long-range surface plasmon polariton (LRSPP) gold (Au) waveguides for the detection of dengue-specific immunoglobulin M (IgM) antibody, and we demonstrate detection in actual patient blood plasma samples. Two surface functionalization approaches are proposed and demonstrated: a dengue virus serotype 2 (DENV-2) functionalized surface to capture dengue-specific IgM antibody in blood plasma and the reverse, a blood plasma functionalized surface to capture DENV-2. The results obtained via these two surface functionalization approaches are comparable to, or of greater quality, than those collected by conventional IgM antibody capture enzyme linked immunosorbent assay (MAC-ELISA). Our second functionalization approach was found to minimize nonspecific binding, thus improving the sensitivity and accuracy of the test. We also demonstrate reuse of the biosensors by regenerating the sensing surface down to the virus (or antibody) level or down to the bare Au.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links