Displaying all 4 publications

Abstract:
Sort:
  1. Yafouz B, Kadri NA, Ibrahim F
    Sensors (Basel), 2014;14(4):6356-69.
    PMID: 24705632 DOI: 10.3390/s140406356
    This paper introduces a dielectrophoretic system for the manipulation and separation of microparticles. The system is composed of five layers and utilizes microarray dot electrodes. We validated our system by conducting size-dependent manipulation and separation experiments on 1, 5 and 15 μm polystyrene particles. Our findings confirm the capability of the proposed device to rapidly and efficiently manipulate and separate microparticles of various dimensions, utilizing positive and negative dielectrophoresis (DEP) effects. Larger size particles were repelled and concentrated in the center of the dot by negative DEP, while the smaller sizes were attracted and collected by the edge of the dot by positive DEP.
  2. Abd Rahman N, Ibrahim F, Yafouz B
    Sensors (Basel), 2017 Feb 24;17(3).
    PMID: 28245552 DOI: 10.3390/s17030449
    Dielectrophoresis (DEP) is a label-free, accurate, fast, low-cost diagnostic technique that uses the principles of polarization and the motion of bioparticles in applied electric fields. This technique has been proven to be beneficial in various fields, including environmental research, polymer research, biosensors, microfluidics, medicine and diagnostics. Biomedical science research is one of the major research areas that could potentially benefit from DEP technology for diverse applications. Nevertheless, many medical science research investigations have yet to benefit from the possibilities offered by DEP. This paper critically reviews the fundamentals, recent progress, current challenges, future directions and potential applications of research investigations in the medical sciences utilizing DEP technique. This review will also act as a guide and reference for medical researchers and scientists to explore and utilize the DEP technique in their research fields.
  3. Yafouz B, Kadri NA, Ibrahim F
    Sensors (Basel), 2013 Jul 12;13(7):9029-46.
    PMID: 23857266 DOI: 10.3390/s130709029
    During the last three decades; dielectrophoresis (DEP) has become a vital tool for cell manipulation and characterization due to its non-invasiveness. It is very useful in the trend towards point-of-care systems. Currently, most efforts are focused on using DEP in biomedical applications, such as the spatial manipulation of cells, the selective separation or enrichment of target cells, high-throughput molecular screening, biosensors and immunoassays. A significant amount of research on DEP has produced a wide range of microelectrode configurations. In this paper; we describe the microarray dot electrode, a promising electrode geometry to characterize and manipulate cells via DEP. The advantages offered by this type of microelectrode are also reviewed. The protocol for fabricating planar microelectrodes using photolithography is documented to demonstrate the fast and cost-effective fabrication process. Additionally; different state-of-the-art Lab-on-a-Chip (LOC) devices that have been proposed for DEP applications in the literature are reviewed. We also present our recently designed LOC device, which uses an improved microarray dot electrode configuration to address the challenges facing other devices. This type of LOC system has the capability to boost the implementation of DEP technology in practical settings such as clinical cell sorting, infection diagnosis, and enrichment of particle populations for drug development.
  4. Yafouz B, Kadri NA, Rothan HA, Yusof R, Ibrahim F
    Electrophoresis, 2016 Feb;37(3):511-8.
    PMID: 26530354 DOI: 10.1002/elps.201500282
    Dielectrophoresis (DEP), the induced movement of dielectric particles placed in a nonuniform electric field, has been used as a potential technique for manipulation and separation of many biological samples without destructive consequences to the cell. Cells of the same genotype in different physiological and pathological states have unique morphological and structural features, therefore, it is possible to differentiate between them using their DEP responses. This paper reports the experimental discrimination of normal and dengue-infected human hepatic fetal epithelial cells (WRL-68 cells) based on their DEP crossover frequency, at which no resultant movement occurs in the cells in response to the DEP force. A microarray dot electrode was used to conduct the DEP experiments. The DEP forces applied to the cells were quantified by analyzing the light intensity shift within the electrode's dot region based on the Cumulative Modal Intensity Shift image analysis technique. The differences in dielectric properties between infected and uninfected cells were exploited by plotting a unique DEP spectrum for each set of cells. We observed that the crossover frequency decreased from 220 kHz for the normal WRL-68 cells to 140 kHz after infection with the dengue virus in a medium conductivity of 100 μS/cm. We conclude that the change in the DEP crossover frequency between dengue-infected cells and their healthy counterparts should allow direct characterization of these cell types by exploiting their electrophysiological properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links