Displaying all 14 publications

Abstract:
Sort:
  1. Yahya EB, Alqadhi AM
    Life Sci, 2021 Mar 15;269:119087.
    PMID: 33476633 DOI: 10.1016/j.lfs.2021.119087
    Cancer treatment has been always considered one of the most critical and vital themes of clinical issues. Many approaches have been developed, depending on the type and the stage of tumor. Gene therapy has the potential to revolutionize different cancer therapy. With the advent of recent bioinformatics technologies and genetic science, it become possible to identify, diagnose and determine the potential treatment using the technology of gene delivery. Several approaches have been developed and experimented in vitro and vivo for cancer therapy including: naked nucleic acids based therapy, targeting micro RNAs, oncolytic virotherapy, suicide gene based therapy, targeting telomerase, cell mediated gene therapy, and CRISPR/Cas9 based therapy. In this review, we present a straightforward introduction to cancer biology and occurrence, highlighting different viral and non-viral gene delivery systems for gene therapy and critically discussed the current and various strategies for cancer gene therapy.
  2. Iqbal MO, Yahya EB
    Tissue Cell, 2021 Oct;72:101525.
    PMID: 33780659 DOI: 10.1016/j.tice.2021.101525
    Aminoglycoside antibiotics are widely employed clinically due to their powerful bactericidal activities, less bacterial resistance compared to beta lactam group and low cost. However, their use has been limited in recent years due to their potential induction of nephrotoxicity. Here we investigate the possibility of reversing nephrotoxicity caused by gentamicin in rat models by using ethanolic crude extract of the medicinal plant Jatropha Mollissima. Nephrotoxic male Wistar rats was obtained by gentamicin antibiotic, which then treated with two doses of J. mollissima crude extract for 3 weeks with monitoring their parameter in weekly base. Our results indicate that J. mollissima crude extract at both doses has strong protection ability against gentamicin nephrotoxicity, most of tested parameters backed to normal values after few days from the administration of the crude extract, which could be due to the antagonized the biochemical action of gentamicin on the proximal tubules of the kidney. The results of histopathologic analysis showed observable improvement in J. mollissima treated groups compared with untreated groups. Our findings suggests the J. mollissima has exceptional nephron protection potentials able to reverse the nephrotoxicity caused by gentamicin antibiotic.
  3. Gielecińska A, Kciuk M, Yahya EB, Ainane T, Mujwar S, Kontek R
    Biochim Biophys Acta Rev Cancer, 2023 Nov;1878(6):189024.
    PMID: 37980943 DOI: 10.1016/j.bbcan.2023.189024
    For decades, common chemotherapeutic drugs have been established to trigger apoptosis, the preferred immunologically "silent" form of cell death. The primary objective of this review was to show that various FDA-approved chemotherapeutic drugs, including cisplatin, cyclosporine, doxorubicin, etoposide, 5-fluorouracil, gemcitabine, paclitaxel, or vinblastine can trigger necroptosis and pyroptosis. We aimed to provide the advantages and disadvantages of the induction of the given type of cell death by chemotherapeutical agents. Moreover, we give a short overview of the molecular mechanism of each type of cell death and indicate the existing crosstalks between cell death types. Finally, we provide a comparison of cell death types to facilitate the exploration of cell death types induced by other chemotherapeutical agents. Understanding the cell death pathway induced by a drug can lessen side effects and assist the discovery of new combinations with synergistic effects and low systemic toxicity.
  4. Yahya EB, Amirul AA, H P S AK, Olaiya NG, Iqbal MO, Jummaat F, et al.
    Polymers (Basel), 2021 May 17;13(10).
    PMID: 34067569 DOI: 10.3390/polym13101612
    The global transplantation market size was valued at USD 8.4 billion in 2020 and is expected to grow at a compound annual growth rate of 11.5% over the forecast period. The increasing demand for tissue transplantation has inspired researchers to find alternative approaches for making artificial tissues and organs function. The unique physicochemical and biological properties of biopolymers and the attractive structural characteristics of aerogels such as extremely high porosity, ultra low-density, and high surface area make combining these materials of great interest in tissue scaffolding and regenerative medicine applications. Numerous biopolymer aerogel scaffolds have been used to regenerate skin, cartilage, bone, and even heart valves and blood vessels by growing desired cells together with the growth factor in tissue engineering scaffolds. This review focuses on the principle of tissue engineering and regenerative medicine and the role of biopolymer aerogel scaffolds in this field, going through the properties and the desirable characteristics of biopolymers and biopolymer tissue scaffolds in tissue engineering applications. The recent advances of using biopolymer aerogel scaffolds in the regeneration of skin, cartilage, bone, and heart valves are also discussed in the present review. Finally, we highlight the main challenges of biopolymer-based scaffolds and the prospects of using these materials in regenerative medicine.
  5. Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, et al.
    Cancers (Basel), 2023 May 11;15(10).
    PMID: 37345057 DOI: 10.3390/cancers15102721
    Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
  6. Kciuk M, Alam M, Ali N, Rashid S, Głowacka P, Sundaraj R, et al.
    Molecules, 2023 Jul 06;28(13).
    PMID: 37446908 DOI: 10.3390/molecules28135246
    Cellular signaling pathways involved in the maintenance of the equilibrium between cell proliferation and apoptosis have emerged as rational targets that can be exploited in the prevention and treatment of cancer. Epigallocatechin-3-gallate (EGCG) is the most abundant phenolic compound found in green tea. It has been shown to regulate multiple crucial cellular signaling pathways, including those mediated by EGFR, JAK-STAT, MAPKs, NF-κB, PI3K-AKT-mTOR, and others. Deregulation of the abovementioned pathways is involved in the pathophysiology of cancer. It has been demonstrated that EGCG may exert anti-proliferative, anti-inflammatory, and apoptosis-inducing effects or induce epigenetic changes. Furthermore, preclinical and clinical studies suggest that EGCG may be used in the treatment of numerous disorders, including cancer. This review aims to summarize the existing knowledge regarding the biological properties of EGCG, especially in the context of cancer treatment and prophylaxis.
  7. Rizal S, Alfatah T, Abdul Khalil HPS, Yahya EB, Abdullah CK, Mistar EM, et al.
    Polymers (Basel), 2022 Nov 25;14(23).
    PMID: 36501521 DOI: 10.3390/polym14235126
    The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.
  8. Rizal S, H P S AK, Oyekanmi AA, Gideon ON, Abdullah CK, Yahya EB, et al.
    Polymers (Basel), 2021 Mar 24;13(7).
    PMID: 33805242 DOI: 10.3390/polym13071006
    The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose's crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.
  9. Rizal S, Olaiya FG, Saharudin NI, Abdullah CK, N G O, Mohamad Haafiz MK, et al.
    Polymers (Basel), 2021 Jan 20;13(3).
    PMID: 33498323 DOI: 10.3390/polym13030325
    Textile waste cellulose nanofibrillated fibre has been reported with excellent strength reinforcement ability in other biopolymers. In this research cellulose nanofibrilated fibre (CNF) was isolated from the textile waste cotton fabrics with combined supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was used to enhance the polylactic acid/chitin (PLA/chitin) properties. The properties enhancement effect of the CNF was studied by characterising the PLA/chitin/CNF biocomposite for improved mechanical, thermal, and morphological properties. The tensile properties, impact strength, dynamic mechanical analysis, thermogravimetry analysis, scanning electron microscopy, and the PLA/chitin/CNF biocomposite wettability were studied. The result showed that the tensile strength, elongation, tensile modulus, and impact strength improved significantly with chitin and CNF compared with the neat PLA. Furthermore, the scanning electron microscopy SEM (Scanning Electron Microscopy) morphological images showed uniform distribution and dispersion of the three polymers in each other, which corroborate the improvement in mechanical properties. The biocomposite's water absorption increased more than the neat PLA, and the contact angle was reduced. The results of the ternary blend compared with PLA/chitin binary blend showed significant enhancement with CNF. This showed that the three polymers' combination resulted in a better material property than the binary blend.
  10. Rizal S, Saharudin NI, Olaiya NG, Khalil HPSA, Haafiz MKM, Ikramullah I, et al.
    Molecules, 2021 Apr 01;26(7).
    PMID: 33916094 DOI: 10.3390/molecules26072008
    The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.
  11. Nuryawan A, Abdullah CK, Hazwan CM, Olaiya NG, Yahya EB, Risnasari I, et al.
    Polymers (Basel), 2020 Apr 27;12(5).
    PMID: 32349385 DOI: 10.3390/polym12051007
    Using oil palm trunk (OPT) layered with empty fruit bunch (EFB), so-called hybrid plywood enhanced with palm oil ash nanoparticles, with phenol-formaldehyde (PF) resin as a binder, was produced in this study. The phenol-formaldehyde (PF) resins filled with different loading of oil palm ash (OPA) nanoparticles were prepared and used as glue for layers of the oil palm trunk (OPT) veneer and empty fruit bunch fibre mat. The resulting hybrid plywood produced was characterised. The physical, mechanical, thermal, and morphological properties of the hybrid plywood panels were investigated. The results obtained showed that the presence of OPA nanoparticles significantly affected the physical, mechanical, and thermal properties of the plywood panels. Significant improvements in dimension from water absorption and thickness swelling experiments were obtained for the plywood panels with the highest OPA nanoparticles loading in PF resin. The mechanical properties indicated that plywood composites showed improvement in flexural, shear, and impact properties until a certain loading of OPA nanoparticles in PF resin. Fracture surface morphology also showed the effectiveness of OPA nanoparticles in the reduction of layer breakage due to force and stress distribution. The thermal stability performance showed that PF filled OPA nanoparticles contributed to the thermal stability of the plywood panels. Therefore, the results obtained in this study showed that OPA nanoparticles certainly improved the characteristic of the hybrid plywood.
  12. Alkhalidi HM, Alahmadi AA, Rizg WY, Yahya EB, Abdul Khalil HPS, Mushtaq RY, et al.
    Macromol Rapid Commun, 2024 Mar 02.
    PMID: 38430068 DOI: 10.1002/marc.202300687
    Cancer stands as a leading cause of global mortality, with chemotherapy being a pivotal treatment approach, either alone or in conjunction with other therapies. The primary goal these therapies is to inhibit the growth of cancer cells specifically, while minimizing harm to healthy dividing cells. Conventional treatments have been hampered by their side effects, often causing severe discomfort to patients. Researchers have been exploring innovative approaches to target cancer cells selectively. In this context, biopolymer-based aerogels emerge as innovative platforms, showcasing unique properties that respond intelligently to diverse stimuli, including temperature, pH variations, magnetic fields, and redox potential. This responsiveness enables precise control over the release of anticancer drugs, enhancing therapeutic outcomes. The significance of these aerogels lies in their ability to offer targeted drug delivery with increased efficacy, biocompatibility, and a high drug payload. In this comprehensive review, we discuss the role of biopolymer-based aerogels as an emerging functionalized platforms in anticancer drug delivery. The review addresses the unique properties of biopolymer-based aerogels showing their smart behavior in responding to different stimuli including temperature, pH, magnetic and redox potential to control anticancer drug release. Finally, the review discusses the application of different biopolymer-based aerogel in delivering different anticancer drugs and also discusses the potential of these platforms in gene delivery applications. This article is protected by copyright. All rights reserved.
  13. Jummaat F, Yahya EB, Khalil H P S A, Adnan AS, Alqadhi AM, Abdullah CK, et al.
    Polymers (Basel), 2021 Feb 20;13(4).
    PMID: 33672526 DOI: 10.3390/polym13040633
    Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
  14. Abdul Khalil HPS, Adnan AS, Yahya EB, Olaiya NG, Safrida S, Hossain MS, et al.
    Polymers (Basel), 2020 Aug 06;12(8).
    PMID: 32781602 DOI: 10.3390/polym12081759
    Cellulose nanomaterials from plant fibre provide various potential applications (i.e., biomedical, automotive, packaging, etc.). The biomedical application of nanocellulose isolated from plant fibre, which is a carbohydrate-based source, is very viable in the 21st century. The essential characteristics of plant fibre-based nanocellulose, which include its molecular, tensile and mechanical properties, as well as its biodegradability potential, have been widely explored for functional materials in the preparation of aerogel. Plant cellulose nano fibre (CNF)-based aerogels are novel functional materials that have attracted remarkable interest. In recent years, CNF aerogel has been extensively used in the biomedical field due to its biocompatibility, renewability and biodegradability. The effective surface area of CNFs influences broad applications in biological and medical studies such as sustainable antibiotic delivery for wound healing, the preparation of scaffolds for tissue cultures, the development of drug delivery systems, biosensing and an antimicrobial film for wound healing. Many researchers have a growing interest in using CNF-based aerogels in the mentioned applications. The application of cellulose-based materials is widely reported in the literature. However, only a few studies discuss the potential of cellulose nanofibre aerogel in detail. The potential applications of CNF aerogel include composites, organic-inorganic hybrids, gels, foams, aerogels/xerogels, coatings and nano-paper, bioactive and wound dressing materials and bioconversion. The potential applications of CNF have rarely been a subject of extensive review. Thus, extensive studies to develop materials with cheaper and better properties, high prospects and effectiveness for many applications are the focus of the present work. The present review focuses on the evolution of aerogels via characterisation studies on the isolation of CNF-based aerogels. The study concludes with a description of the potential and challenges of developing sustainable materials for biomedical applications.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links