Displaying all 3 publications

Abstract:
Sort:
  1. Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, et al.
    Biomed Pharmacother, 2023 Jan;157:114020.
    PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020
    Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
  2. Tew WY, Tan CS, Yan CS, Loh HW, Wang X, Wen X, et al.
    Hypertens Res, 2024 Sep;47(9):2416-2434.
    PMID: 38914702 DOI: 10.1038/s41440-024-01652-4
    Hesperetin is one of the prominent flavonoids found in citrus fruit. Several research studies have reported that hesperetin can promote vasodilation in vascular tissue by increasing the level of nitric oxide and cyclic nucleotides. However, these may not be the only pathway for hesperetin to exert its vasodilatory effect. In addition to vasodilation, hesperetin has been found to carry an antihypertensive effect through intraperitoneal injection, although no study has comprehensively investigated the antihypertensive effect of hesperetin through oral administration. Therefore, this study aimed to determine the possible mechanism pathways involved in hesperetin-induced vasodilation and investigated its antihypertensive effects on hypertensive rats' model via oral administration. The ex vivo experimental findings showed that the NO/sGC/cGMP signalling pathway was involved in hesperetin-mediated vasodilation. Moreover, hesperetin activated the AC/cAMP/PKA pathway through PGI2 and activated the β2-adrenergic receptor. Hesperetin can act as a voltage-gated potassium channel (KV) and ATP-sensitive potassium channel (KATP) opener. The intracellular calcium in vascular smooth muscle was reduced by hesperetin through blocking the voltage-operated calcium channels (VOCC) and inositol triphosphate receptor (IP3R). In the in vivo assessment, hesperetin shows a significant decrease in Spontaneously Hypertensive rats' blood pressure following 21 days of oral treatment. The sub-chronic toxicity assessment demonstrated that hesperetin exhibited no deleterious effects on the body weights, clinical biochemistry and haematological profile of Sprague-Dawley rats. This study implies that hesperetin holds promise as a potential medication for hypertension treatment, devoid of undesirable side effects.
  3. Jingying C, Baocai L, Ying C, Wujun Z, Yunqing Z, Yingzhen H, et al.
    PMID: 37625275 DOI: 10.1016/j.saa.2023.123229
    Dioscorea oppositifolia is an important crop and functional food. D. oppositifolia tuber is often adulterated with D. persimilis, D. alata, and D. fordii tuber in the commercial market. This study proposed an integrated Fourier transform infrared spectroscopy (FT-IR) with chemometric approach to differentiate these four Dioscorea species. A total of 107 Dioscorea spp. tuber samples were collected from different locations in China. Principal Component Analysis (PCA), PCA-Class, and Orthogonal Partial Least Square Discriminant Analysis (OPLS-DA) were utilised to classify the FT-IR spectra. In this PCA is unable to differentiate the Dioscorea spp. tuber effectively. However, PCA-Class and OPLS-DA can distinguish spp. these 4 species Dioscorea tuber with high accuracy, sensitivity, and specificity. Additionally, the RMSEE, RMSEP and RMSECV values for OPLS-DA model were low, showing that it is a good model. The combination of FT-IR with the PCA-Class and OPLS-DA is practical in discriminating Dioscorea spp. tubers.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links