Displaying all 2 publications

Abstract:
Sort:
  1. Li G, Sng KS, Shu B, Wang YJ, Yao M, Cui XJ
    Eur J Pharmacol, 2023 Apr 15;945:175524.
    PMID: 36803629 DOI: 10.1016/j.ejphar.2023.175524
    Spinal cord injury (SCI) is a serious disabling condition that leads to the loss of motor, sensory, and excretory functions, seriously affecting the quality of life of patients and imposing a heavy burden on the patient's family and society. There is currently a lack of effective treatments for SCI. However, a large number of experimental studies have shown beneficial effects of tetramethylpyrazine (TMP). We performed a meta-analysis to systematically evaluate the effects of TMP on neurological and motor function recovery in rats with acute SCI. English (PubMed, Web of Science, and EMbase) and Chinese (CNKI, Wanfang, VIP, and CBM) databases were searched for literature related to TMP treatment in rats with SCI published until October 2022. Two researchers independently read the included studies, extracted the data, and evaluated their quality. A total of 29 studies were included, and a risk of bias assessment revealed that the methodological quality of the included studies was low. The results of the meta-analysis showed that the Basso, Beattie, and Bresnahan (BBB; n = 429, pooled mean difference [MD] = 3.44, 95% confidence interval [CI] = 2.67 to 4.22, p 
  2. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links