Displaying all 5 publications

Abstract:
Sort:
  1. Rauf A, Shahzad S, Bajda M, Yar M, Ahmed F, Hussain N, et al.
    Bioorg Med Chem, 2015 Sep 1;23(17):6049-58.
    PMID: 26081763 DOI: 10.1016/j.bmc.2015.05.038
    In this study 36 new compounds were synthesized by condensing barbituric acid or thiobarbituric acid and respective anilines (bearing different substituents) in the presence of triethyl orthoformate in good yields. In vitro urease inhibition studies against jack bean urease revealed that barbituric acid derived compounds (1-9 and 19-27) were found to exhibit low to moderate activity however thiobarbituric acid derived compounds (10-18 and 28-36) showed significant inhibition activity at low micro-molar concentrations. Among the synthesized compounds, compounds (15), (12), (10), (36), (16) and (35) showed excellent urease inhibition with IC50 values 8.53 ± 0.027, 8.93 ± 0.027, 12.96 ± 0.13, 15 ± 0.098, 18.9 ± 0.027 and 19.7 ± 0.63 μM, respectively, even better than the reference compound thiourea (IC50 = 21 ± 0.011). The compound (11) exhibited comparable activity to the standard with IC50 value 21.83 ± 0.19 μM. In silico molecular docking studies for most active compounds (10), (12), (15), (16), (35) and (36) and two inactive compounds (3) and (6) were performed to predict the binding patterns.
  2. Rizwan M, Yahya R, Hassan A, Yar M, Abd Halim AA, Rageh Al-Maleki A, et al.
    J Mater Sci Mater Med, 2019 Jun 11;30(6):72.
    PMID: 31187295 DOI: 10.1007/s10856-019-6273-3
    The success of wound healing depends upon the proper growth of vascular system in time in the damaged tissues. Poor blood supply to wounded tissues or tissue engineered grafts leads to the failure of wound healing or rejection of grafts. In present paper, we report the synthesis of novel organosoluble and pro-angiogenic chitosan derivative (CSD) by the reaction of chitosan with 1,3-dimethylbarbituric acid and triethylorthoformate (TEOF). The synthesized material was characterized by FTIR and 13C-NMR to confirm the incorporated functional groups and new covalent connectivities. Biodegradability of the synthesized chitosan derivative was tested in the presence of lysozyme and was found to be comparable with CS. The cytotoxicity and apoptosis effect of new derivative was determined against gastric adenocarcinoma (AGS) cells and was found to be non-toxic. The CSD was found to be soluble in majority of organic solvents. It was blended with polycaprolactone (PCL) to form composite scaffolds. From an ex ovo CAM assay, it was noted that CSD stimulated the angiogenesis.
  3. Rizwan M, Yahya R, Hassan A, Yar M, Azzahari AD, Selvanathan V, et al.
    Polymers (Basel), 2017 06 14;9(6).
    PMID: 30970902 DOI: 10.3390/polym9060225
    The authors wish to make a change to their published paper [1]. [...].
  4. Haider MR, Ahmad K, Siddiqui N, Ali Z, Akhtar MJ, Fuloria N, et al.
    Bioorg Chem, 2019 07;88:102962.
    PMID: 31085373 DOI: 10.1016/j.bioorg.2019.102962
    A series of 9-(2-(1-arylethylidene)hydrazinyl)acridine and its analogs were designed, synthesized and evaluated for biological activities. Various biochemical assays were performed to determine the free radical scavenging capacity of synthesized compounds (4a-4j). Anticancer activity of these compounds was assessed against two different human cancer cell lines viz cervical cancer cells (HeLa) and liver cancer cells (HepG2) as well as normal human embryonic kidney cell line (HEK 293). Compounds 4b, 4d and 4e showed potential anti-proliferative effects on HeLa cells. Based on results obtained from antioxidant and cytotoxicity studies, 4b, 4d and 4e were further studied in detail for different biological activities. 4b, 4d and 4e reduced the cell growth, inhibited metastatic activity and declined the potential of cell migration in HeLa cell lines. Topoisomerase1 (Top1) treated with compounds 4b, 4d and 4e exhibited inhibition of Top1 and prevented DNA replication. Molecular docking results validate that interaction of compounds 4b, 4d and 4e with Top1-DNA complex, which might be accountable for their inhibitory effects. Further it was concluded that compounds 4b, 4d and 4e arrests the cells at S phase and consequently induces cell death through DNA damage in HeLa cells.
  5. Naaz F, Ahmad F, Lone BA, Pokharel YR, Fuloria NK, Fuloria S, et al.
    Bioorg Chem, 2020 01;95:103519.
    PMID: 31884140 DOI: 10.1016/j.bioorg.2019.103519
    A set of two series of 1,3,4-oxadiazole (11a-n) and 1,2,4-Triazole (12a, c, e, g, h, j-n) based topsentin analogues were prepared by replacing imizadole moiety of topsentin through a multistep synthesis starting from indole. All the compounds synthesized were submitted for single dose (10 µM) screening against a NCI panel of 60-human cancer cell lines. Among all cancer cell lines, colon (HCC-2998) and Breast (MCF-7, T-47D) cancer cell lines were found to be more susceptible for this class of compounds. Among the compounds tested, compounds 11a, 11d, 11f, 12e and 12h, were exhibited good anti-proliferative activity against various cancer cell lines. Compounds 11d, 12e and 12h demonstrated better activity with IC50 2.42 µM, 3.06 µM, and 3.30 µM respectively against MCF-7 human cancer cell line than that of the standard drug doxorubicin IC50 6.31 µM. Furthermore, 11d induced cell cycle arrest at G0/G1 phase and also disrupted mitochondrial membrane potential with reducing cell migration potential of MCF-7 cells in dose dependent manner. In vitro microtubule polymerization assays found that compound 11d disrupt tubulin dynamics by inhibiting tubulin polymerization with IC50 3.89 μM compared with standard nocodazole (IC50 2.49 μM). In silico docking studies represented that 11d was binding at colchicine binding site of β-tubulin. Compound 11d emerged as lead molecule from the library of compounds tested and this may serve as a template for further drug discovery.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links