Glioblastoma Multiforme (GBM) is a debilitating type of brain cancer with a high mortality rate. Despite current treatment options such as surgery, radiotherapy, and the use of temozolomide and bevacizumab, it is considered incurable. Various methods, such as drug repositioning, have been used to increase the number of available treatments. Drug repositioning is the use of FDA-approved drugs to treat other diseases. This is possible because the drugs used for this purpose have polypharmacological effects. This means that these medications can bind to multiple targets, resulting in multiple mechanisms of action. Antipsychotics are one type of drug used to treat GBM. Antipsychotics are a broad class of drugs that can be further subdivided into typical and atypical classes. Typical antipsychotics include chlorpromazine, trifluoperazine, and pimozide. This class of antipsychotics was developed early on and primarily works on dopamine D2 receptors, though it can also work on others. Olanzapine and Quetiapine are examples of atypical antipsychotics, a category that was created later. These medications have a high affinity for serotonin receptors such as 5- HT2, but they can also act on dopamine and H1 receptors. Antipsychotic medications, in the case of GBM, also have other effects that can affect multiple pathways due to their polypharmacological effects. These include NF-B suppression, cyclin deregulation, and -catenin phosphorylation, among others. This review will delve deeper into the polypharmacological, the multiple effects of antipsychotics in the treatment of GBM, and an outlook for the field's future progression.
The tremendous evolution in modern technology has led to a paradigm shift in neurosurgery. The latest advancements such as augmented reality, virtual reality, and mobile applications have been incorporated into neurosurgical practice. NeuroVerse, representing the application of the metaverse in neurosurgery, brings enormous potential to neurology and neurosurgery. Implementation of NeuroVerse could potentially elevate neurosurgical and interventional procedures, enhance medical visits and patient care, and reshape neurosurgical training. However, it is also vital to consider the challenges that may be associated with its implementation, such as privacy issues, cybersecurity breaches, ethical concerns, and widening of existing healthcare inequalities. NeuroVerse adds phenomenal dimensions to the neurosurgical environment for patients, doctors, and trainees, and represents an incomparable advancement in the delivery of medicine. Therefore, more research is needed to encourage widespread use of the metaverse in healthcare, particularly focusing on the areas of morality and credibility. Although the metaverse is expected to expand rapidly during and after the COVID-19 pandemic, it remains to be seen whether it represents an emerging technology that will revolutionize our society and healthcare or simply an immature condition of the future.
Neurosurgeons receive extensive technical training, which equips them with the knowledge and skills to specialise in various fields and manage the massive amounts of information and decision-making required throughout the various stages of neurosurgery, including preoperative, intraoperative, and postoperative care and recovery. Over the past few years, artificial intelligence (AI) has become more useful in neurosurgery. AI has the potential to improve patient outcomes by augmenting the capabilities of neurosurgeons and ultimately improving diagnostic and prognostic outcomes as well as decision-making during surgical procedures. By incorporating AI into both interventional and non-interventional therapies, neurosurgeons may provide the best care for their patients. AI, machine learning (ML), and deep learning (DL) have made significant progress in the field of neurosurgery. These cutting-edge methods have enhanced patient outcomes, reduced complications, and improved surgical planning.
The circadian rhythm (CR) is a fundamental biological process regulated by the Earth's rotation and solar cycles. It plays a critical role in various bodily functions, and its dysregulation can have systemic effects. These effects impact metabolism, redox homeostasis, cell cycle regulation, gut microbiota, cognition, and immune response. Immune mediators, cycle proteins, and hormones exhibit circadian oscillations, supporting optimal immune function and defence against pathogens. Sleep deprivation and disruptions challenge the regulatory mechanisms, making immune responses vulnerable. Altered CR pathways have been implicated in diseases such as diabetes, neurological conditions, and systemic autoimmune diseases (SADs). SADs involve abnormal immune responses to self-antigens, with genetic and environmental factors disrupting self-tolerance and contributing to conditions like Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Inflammatory Myositis. Dysregulated CR may lead to increased production of pro-inflammatory cytokines, contributing to the systemic responses observed in SADs. Sleep disturbances significantly impact the quality of life of patients with SADs; however, they are often overlooked. The relationship between sleep and autoimmune conditions, whether causal or consequential to CR dysregulation, remains unclear. Chrono-immunology investigates the role of CR in immunity, offering potential for targeted therapies in autoimmune conditions. This paper provides an overview of the connections between sleep and autoimmune conditions, highlighting the importance of recognizing sleep disturbances in SADs and the need for further research into the complex relationship between the CR and autoimmune diseases.