A dental health survey of 15,197 schoolchildren age 6-18 years was conducted in West Malaysia. The caries experience in the permanent teeth of the three racial groups, namely Malay, Chinese and Indian/Pakistani, showed a distinct variation. The prevalence was highest among the Chinese children, being about twice that of the Malay and Indian/Pakistani children. In the primary dentition, however, the caries experience in the three racial groups was comparable. An analysis of the factors contributing to the racial variation showed that dietary influence was not the only factor responsible. The possibility of a racial variation in caries susceptibility has been postulated. In the primary dentition the similar caries experience observed in the three groups of children was most probably due to the widespread occurrence of rampant caries which would heavily weight the dift score of the children in all three groups. The need to fluoridate the public water supply as an effective preventive measure is emphasized.
Hypothyroidism in infants is caused by the insufficient production of hormones by the thyroid gland. Due to stress in the chest cavity as a result of the enlarged liver, their cry signals are unique and can be distinguished from the healthy infant cries. This study investigates the effect of feature selection with Binary Particle Swarm Optimization on the performance of MultiLayer Perceptron classifier in discriminating between the healthy infants and infants with hypothyroidism from their cry signals. The feature extraction process was performed on the Mel Frequency Cepstral coefficients. Performance of the MLP classifier was examined by varying the number of coefficients. It was found that the BPSO enhances the classification accuracy while reducing the computation load of the MLP classifier. The highest classification accuracy of 99.65% was achieved for the MLP classifier, with 36 filter banks, 5 hidden nodes and 11 BPS optimised MFC coefficients.
This paper presents a new application of the Particle Swarm Optimization (PSO) algorithm to optimize Mel Frequency Cepstrum Coefficients (MFCC) parameters, in order to extract an optimal feature set for diagnosis of hypothyroidism in infants using Multi-Layer Perceptrons (MLP) neural network. MFCC features is influenced by the number of filter banks (f(b)) and the number of coefficients (n(c)) used. These parameters are critical in representation of the features as they affect the resolution and dimensionality of the features. In this paper, the PSO algorithm was used to optimize the values of f(b) and n(c). The MFCC features based on the PSO optimization were extracted from healthy and unhealthy infant cry signals and used to train MLP in the classification of hypothyroid infant cries. The results indicate that the PSO algorithm could determine the optimum combination of f(b) and n(c) that produce the best classification accuracy of the MLP.
This study proposed a novel application of Neural Network AutoRegressive eXogenous (NNARX) model in predicting nonlinear behaviour of riverbank erosion rates which is difficult to be achieved with good accuracy using conventional approaches. This model can estimate complex river bank erosion rates with flow variations. The NNARX model analysed to a set of primary data, 60% (203 data for training) and 40% (135 data for testing), which were collected from Sg. Bernam, Malaysia. A set of nondimensional parameters, known as functional relationship, used as an input to the NNARX model has been established using the method of repeating variables. The One-Step-Ahead time series prediction plots are used to assess the accuracy of all developed models. Model no. 6 (5 independent variables with 10 hidden layers) gives good predictive performance, supported by the graphical analysis with discrepancy ratio of 94% and 90% for training and testing datasets. This finding is consistent with model accuracy result, where Model no. 6 achieved R2 of 0.932 and 0.788 for training and testing datasets, respectively. Result shows that bank erosion is maximized when the near-bank velocity between 0.2 and 0.5 m/s, and the riverbank erosion is between 1.5 and 1.8 m/year. On the other hand, higher velocities ranging from 0.8 to 1.3 m/s induces erosion at a rate between 0.1 and 0.4 m/year. Sensitivity analysis shows that the highest accuracy of 91% is given by the ratio of shear velocity to near-bank velocity followed by boundary shear stress to near-bank velocity ratio (88.5%) and critical shear stress to near-bank velocity ratio (88.2%). It is concluded that the developed model has accurately predicted non-linear behaviour of riverbank erosion rates with flow variations. The study's findings provide valuable insights in advanced simulations and predictions of channel migration, encompassing both lateral and vertical movements, the repercussions on the adjacent river corridor, assessing the extent of land degradation and in formulating plans for effective riverbank protection and management measures.
This paper elaborates on the novel intelligence assessment method using the brainwave sub-band power ratio features. The study focuses only on the left hemisphere brainwave in its relaxed state. Distinct intelligence quotient groups have been established earlier from the score of the Raven Progressive Matrices. Sub-band power ratios are calculated from energy spectral density of theta, alpha and beta frequency bands. Synthetic data have been generated to increase dataset from 50 to 120. The features are used as input to the artificial neural network. Subsequently, the brain behaviour model has been developed using an artificial neural network that is trained with optimized learning rate, momentum constant and hidden nodes. Findings indicate that the distinct intelligence quotient groups can be classified from the brainwave sub-band power ratios with 100% training and 88.89% testing accuracies.
Poverty, an intricate global challenge influenced by economic, political, and social elements, is characterized by a deficiency in crucial resources, necessitating collective efforts towards its mitigation as embodied in the United Nations' Sustainable Development Goals. The Gini coefficient is a statistical instrument used by nations to measure income inequality, economic status, and social disparity, as escalated income inequality often parallels high poverty rates. Despite its standard annual computation, impeded by logistical hurdles and the gradual transformation of income inequality, we suggest that short-term forecasting of the Gini coefficient could offer instantaneous comprehension of shifts in income inequality during swift transitions, such as variances due to seasonal employment patterns in the expanding gig economy. System Identification (SI), a methodology utilized in domains like engineering and mathematical modeling to construct or refine dynamic system models from captured data, relies significantly on the Nonlinear Auto-Regressive (NAR) model due to its reliability and capability of integrating nonlinear functions, complemented by contemporary machine learning strategies and computational algorithms to approximate complex system dynamics to address these limitations. In this study, we introduce a NAR Multi-Layer Perceptron (MLP) approach for brief term estimation of the Gini coefficient. Several parameters were tested to discover the optimal model for Malaysia's Gini coefficient within 1987-2015, namely the output lag space, hidden units, and initial random seeds. The One-Step-Ahead (OSA), residual correlation, and residual histograms were used to test the validity of the model. The results demonstrate the model's efficacy over a 28-year period with superior model fit (MSE: 1.14 × 10-7) and uncorrelated residuals, thereby substantiating the model's validity and usefulness for predicting short-term variations in much smaller time steps compared to traditional manual approaches.