Displaying all 12 publications

Abstract:
Sort:
  1. Tan MK, Siddiqi A, Yeo LY
    Sci Rep, 2017 07 27;7(1):6652.
    PMID: 28751783 DOI: 10.1038/s41598-017-07025-x
    The Miniaturised Lab-on-a-Disc (miniLOAD) platform, which utilises surface acoustic waves (SAWs) to drive the rotation of thin millimeter-scale discs on which microchannels can be fabricated and hence microfluidic operations can be performed, offers the possibility of miniaturising its larger counterpart, the Lab-on-a-CD, for true portability in point-of-care applications. A significant limitation of the original miniLOAD concept, however, is that it does not allow for flexible control over the disc rotation direction and speed without manual adjustment of the disc's position, or the use of multiple devices to alter the SAW frequency. In this work, we demonstrate the possibility of achieving such control with the use of tapered interdigitated transducers to confine a SAW beam such that the localised acoustic streaming it generates imparts a force, through hydrodynamic shear, at a specific location on the disc. Varying the torque that arises as a consequence by altering the input frequency to the transducers then allows the rotational velocity and direction of the disc to be controlled with ease. We derive a simple predictive model to illustrate the principle by which this occurs, which we find agrees well with the experimental measurements.
  2. Wong KS, Lee L, Yeo LY, Tan MK
    R Soc Open Sci, 2019 Mar;6(3):181560.
    PMID: 31032012 DOI: 10.1098/rsos.181560
    Seeds, which are high in protein and essential nutrients, must go through a hydration process before consumption. The ability to rapidly increase water absorption can significantly reduce the soaking time as well as the amount of energy needed for cooking seeds. Many studies in the literature employ high-power (102 W) low-frequency (104 Hz) ultrasound; although their results are very promising where more than 100% increase in water content can be obtained between the treated and untreated seeds, the high-power and low-frequency ultrasound often causes acoustic cavitation under high intensity, which can severely disrupt the cell walls and damage the seeds. In our study, however, we demonstrate that treating the seeds via a miniature surface acoustic wave device, which operates at low-power (100 W) and high-frequency (107 Hz) range, gives rise to a higher water absorption rate without the acoustic cavitations. By comparing the water content between the treated and untreated seeds, an increase of up to 2600% (for chickpeas) and 6350% (for mung bean) can be obtained after 60 min. A significantly higher water absorption in mung beans can be attributed to the larger pore size when compared with the acoustic wavelength in water, enabling an efficient transmission of acoustic wave inside the pores. Our results also indicate that the germination time can be reduced by half for treated seeds as compared to the untreated seeds.
  3. Ang KM, Yeo LY, Hung YM, Tan MK
    Lab Chip, 2016 09 21;16(18):3503-14.
    PMID: 27502324 DOI: 10.1039/c6lc00780e
    The deposition of a thin graphene film atop a chip scale piezoelectric substrate on which surface acoustic waves are excited is observed to enhance its performance for fluid transport and manipulation considerably, which can be exploited to achieve further efficiency gains in these devices. Such gains can then enable complete integration and miniaturization for true portability for a variety of microfluidic applications across drug delivery, biosensing and point-of-care diagnostics, among others, where field-use, point-of-collection or point-of-care functionality is desired. In addition to a first demonstration of vibration-induced molecular transport in graphene films, we show that the coupling of the surface acoustic wave gives rise to antisymmetric Lamb waves in the film which enhance molecular diffusion and hence the flow through the interstitial layers that make up the film. Above a critical input power, the strong substrate vibration displacement can also force the molecules out of the graphene film to form a thin fluid layer, which subsequently destabilizes and breaks up to form a mist of micron dimension aerosol droplets. We provide physical insight into this coupling through a simple numerical model, verified through experiments, and show several-fold improvement in the rate of fluid transport through the film, and up to 55% enhancement in the rate of fluid atomization from the film using this simple method.
  4. Ang KM, Yeo LY, Hung YM, Tan MK
    Biomicrofluidics, 2016 Sep;10(5):054106.
    PMID: 27703592
    The ability to drive microcentrifugation for efficient micromixing and particle concentration and separation on a microfluidic platform is critical for a wide range of lab-on-a-chip applications. In this work, we investigate the use of amplitude modulation to enhance the efficiency of the microcentrifugal recirculation flows in surface acoustic wave microfluidic systems, thus concomitantly reducing the power consumption in these devices for a given performance requirement-a crucial step in the development of miniaturized, integrated circuits for true portable functionality. In particular, we show that it is possible to obtain an increase of up to 60% in the acoustic streaming velocity in a microdroplet with kHz order modulation frequencies due to the intensification in Eckart streaming; the streaming velocity is increasing as the modulation index is increased. Additionally, we show that it is possible to exploit this streaming enhancement to effect improvements in the speed of particle concentration by up to 70% and the efficiency of micromixing by 50%, together with a modest decrease in the droplet temperature.
  5. Ang KM, Yeo LY, Hung YM, Tan MK
    Nanoscale, 2017 May 18;9(19):6497-6508.
    PMID: 28466906 DOI: 10.1039/c7nr01690e
    We exploit the possibility of enhancing the molecular transport of liquids through graphene films using amplitude modulated surface acoustic waves (SAWs) to demonstrate effective and efficient nanoparticle filtration. The use of the SAW, which is an extremely efficient means for driving microfluidic transport, overcomes the need for the large mechanical pumps required to circumvent the large pressure drops encountered in conventional membranes for nanoparticle filtration. 100% filtration efficiency was obtained for micron-dimension particulates, decreasing to only 95% for the filtration of particles of tens of nanometers in dimension, which is comparable to that achieved with other methods. To circumvent clogging of the film, which is typical with all membrane filters, a backwash operation to flush the nanoparticles is incorporated simply by reversing the SAW-induced flow such that 98% recovery of the initial filtration rate is recovered. Given these efficiencies, together with the low cost and compact size of the chipscale SAW devices, we envisage the possibility of scaling out the process by operating a large number of devices in parallel to achieve typical industrial-scale throughputs with potential benefits in terms of substantially lower capital, operating and maintenance costs.
  6. Chew NSL, Ooi CW, Yeo LY, Tan MK
    Ultrasonics, 2024 Mar;138:107234.
    PMID: 38171227 DOI: 10.1016/j.ultras.2023.107234
    The development of alternative techniques to efficiently inactivate bacterial suspensions is crucial to prevent transmission of waterborne illness, particularly when commonly used techniques such as heating, filtration, chlorination, or ultraviolet treatment are not practical or feasible. We examine the effect of MHz-order acoustic wave irradiation in the form of surface acoustic waves (SAWs) on Gram-positive (Escherichia coli) and Gram-negative (Brevibacillus borstelensis and Staphylococcus aureus) bacteria suspended in water droplets. A significant increase in the relative bacterial load reduction of colony-forming units (up to 74%) can be achieved by either increasing (1) the excitation power, or, (2) the acoustic treatment duration, which we attributed to the effect of the acoustic radiation force exerted on the bacteria. Consequently, by increasing the maximum pressure amplitude via a hybrid modulation scheme involving a combination of amplitude and pulse-width modulation, we observe that the bacterial inactivation efficiency can be further increased by approximately 14%. By combining this scalable acoustic-based bacterial inactivation platform with plasma-activated water, a 100% reduction in E. coli is observed in less than 10 mins, therefore demonstrating the potential of the synergistic effects of MHz-order acoustic irradiation and plasma-activated water as an efficient strategy for water decontamination.
  7. Ang KM, Yeo LY, Friend JR, Hung YM, Tan MK
    Rev Sci Instrum, 2016 Jan;87(1):014902.
    PMID: 26827343 DOI: 10.1063/1.4939757
    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10(6) Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ∼ 10(-9) m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ∼ 10(-8) m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10(-8) m with 10(6) Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.
  8. Wong KS, Lee L, Hung YM, Yeo LY, Tan MK
    Anal Chem, 2019 10 01;91(19):12358-12368.
    PMID: 31500406 DOI: 10.1021/acs.analchem.9b02850
    Rayleigh surface acoustic waves (SAWs) have been demonstrated as a powerful and effective means for driving a wide range of microfluidic actuation processes. Traditionally, SAWs have been generated on piezoelectric substrates, although the cost of the material and the electrode deposition process makes them less amenable as low-cost and disposable components. As such, a "razor-and-blades" model that couples the acoustic energy of the SAW on the piezoelectric substrate through a fluid coupling layer and into a low-cost and, hence, disposable silicon superstrate on which various microfluidic processes can be conducted has been proposed. Nevertheless, it was shown that only bulk vibration in the form of Lamb waves can be excited in the superstrate, which is considerably less efficient and flexible in terms of microfluidic functionality compared to its surface counterpart, that is, the SAW. Here, we reveal an extremely simple way that quite unexpectedly and rather nonintuitively allows SAWs to be generated on the superstrate-by coating the superstrate with a thin gold layer. In addition to verifying the existence of the SAW on the coated superstrate, we carry out finite-difference time domain numerical simulations that not only confirm the experimental observations but also facilitate an understanding of the surprising difference that the coating makes. Finally, we elucidate the various power-dependent particle concentration phenomena that can be carried out in a sessile droplet atop the superstrate and show the possibility for simply carrying out rapid and effective microcentrifugation-a process that is considerably more difficult with Lamb wave excitation on the superstrate.
  9. Wong KS, Lim WTH, Ooi CW, Yeo LY, Tan MK
    Lab Chip, 2020 05 19;20(10):1856-1868.
    PMID: 32342089 DOI: 10.1039/d0lc00001a
    The presence of reactive species in plasma-activated water is known to induce oxidative stresses in bacterial species, which can result in their inactivation. By integrating a microfludic chipscale nebulizer driven by surface acoustic waves (SAWs) with a low-temperature atmospheric plasma source, we demonstrate an efficient technique for in situ production and application of plasma-activated aerosols for surface disinfection. Unlike bulk conventional systems wherein the water is separately batch-treated within a container, we show in this work the first demonstration of continuous plasma-treatment of water as it is transported through a paper strip from a reservoir onto the chipscale SAW device. The significantly larger surface area to volume ratio of the water within the paper strip leads to a significant reduction in the duration of the plasma-treatment, while maintaining the concentration of the reactive species. The subsequent nebulization of the plasma-activated water by the SAW then allows the generation of plasma-activated aerosols, which can be directly sprayed onto the contaminated surface, therefore eliminating the storage of the plasma-activated water and hence circumventing the typical limitation in conventional systems wherein the concentration of the reactive species diminishes over time during storage, resulting in a reduction in the efficacy of bacterial inactivation. In particular, we show up to 96% reduction in Escherichia coli colonies through direct spraying with the plasma-activated aerosols. This novel, low-cost, portable and energy-efficient hybrid system necessitates only minimal maintenance as it only requires the supply of tap water and battery power for operation, and is thus suitable for decontamination in home environments.
  10. Chan JS, Poh PE, Ismadi MP, Yeo LY, Tan MK
    Water Res, 2020 Feb 01;169:115187.
    PMID: 31671294 DOI: 10.1016/j.watres.2019.115187
    There is a pressing need for efficient biological treatment systems for the removal of organic compounds in greywater given the rapid increase in household wastewater produced as a consequence of rapid urbanisation. Moreover, proper treatment of greywater allows its reuse that can significantly reduce the demand for freshwater supplies. Herein, we demonstrate the possibility of enhancing the removal efficiency of solid contaminants from greywater using MHz-order surface acoustic waves (SAWs). A key distinction of the use of these high frequency surface acoustic waves, compared to previous work on its lower frequency (kHz order) bulk ultrasound counterpart for wastewater treatment, is the absence of cavitation, which can inflict considerable damage on bacteria, thus limiting the intensity and duration, and hence the efficiency enhancement, associated with the acoustic exposure. In particular, we show that up to fivefold improvement in the removal efficiency can be obtained, primarily due to the ability of the acoustic pressure field in homogenizing and reducing the size of bacterial clusters in the sample, therefore providing a larger surface area that promotes greater bacteria digestion. Alternatively, the SAW exposure allows the reduction in the treatment duration to achieve a given level of removal efficiency, thus facilitating higher treatment rates and hence processing throughput. Given the low-cost of the miniature chipscale platform, these promising results highlight its possibility for portable greywater treatment for domestic use or for large-scale industrial wastewater processing through massive parallelization.
  11. Md Ali MA, Kayani ABA, Yeo LY, Chrimes AF, Ahmad MZ, Ostrikov KK, et al.
    Biomed Microdevices, 2018 11 06;20(4):95.
    PMID: 30402766 DOI: 10.1007/s10544-018-0341-1
    Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell-cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.
  12. Rezk AR, Ahmed H, Brain TL, Castro JO, Tan MK, Langley J, et al.
    J Phys Chem Lett, 2020 Jun 18;11(12):4655-4661.
    PMID: 32453583 DOI: 10.1021/acs.jpclett.0c01227
    We reveal a unique mechanism by which pure water can be dissociated to form free radicals without requiring catalysts, electrolytes, or electrode contact by means of high-frequency nanometer-amplitude electromechanical surface vibrations in the form of surface acoustic waves (SAWs) generated on a piezoelectric substrate. The physical undulations associated with these mechanical waves, in concert with the evanescent electric field arising from the piezoelectric coupling, constitute half-wavelength "nanoelectrochemical cells" in which liquid is trapped within the SAW potential minima with vertical dimensions defined by the wave amplitude (∼10 nm), thereby forming highly confined polarized regions with intense electric field strengths that enable the breakdown of water. The ions and free radicals that are generated rapidly electromigrate under the high field intensity in addition to being convectively transported away from the cells by the bulk liquid recirculation generated by the acoustic excitation, thereby overcoming mass transport limitations that lead to ion recombination.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links