Poly(β-cyclodextrin-ionic liquid) grafted magnetic nanoparticles combined with 1-octanol as supramolecular solvents (SUPRASs) presenting new ferrofluid was developed and successfully applied in the dispersive liquid-phase microextraction of seven representative polycyclic aromatic hydrocarbons. One variable at-a-time (OVAT) analysis and response surface methodology (RSM) were used for efficient optimization of the main variables. The calibration curves were found to be linear in the range of 0.1-150 ng mL-1 with correlation of determinations (R2) ranging from 0.9944 to 0.9986. Detection limits ranged at 0.02-0.07 ng mL-1 for all studied PAHs. The intra and inter-day precision values (RSD %) were in the range of 1.80%-7.56% and 2.97%-8.23%, respectively. The ferrofluid showed a satisfactory reproducibility between 1.72% and 5.90%, and acceptable recovery values at 84%-110% were obtained for the real samples analysis. The optimized method was successfully applied to access the content safety of the PAHs studied in a variety of commercial food and beverages available in Malaysia.
A chiral separation method coupled with capillary electrophoresis (CE) analysis for ketoconazole and miconazole enantiomers using chiral selectors such as β-cyclodextrin (β-CD) and hydroxypropyl-β-CD (HP-β-CD) was developed in this study, which included the optimisation, validation and application of the method on the antifungal cream samples. The formation of inclusion complex between the hosts (β-CD and HP-β-CD) and guests (ketoconazole and miconazole) were compared and analysed using ultraviolet-visible spectrophotometry, nuclear magnetic resonance (NMR) spectroscopy and molecular docking methods. Results from the study showed that in a concentration that ranged between 0.25 and 50 mg L-1 , the linear calibration curves of each enantiomer had a high coefficient of regression (R2 > 0.999), low limit of detection (0.075 mg L-1 ) and low limit of quantification (0.25 mg L-1 ). The relative standard deviation (RSD) of the intraday and interday analyses ranged from 0.79% to 8.01% and 3.30% to 11.43%, respectively, while the recoveries ranged from 82.0% to 105.7% (RSD < 7%, n = 3). The most probable structure of the inclusion complexes was proposed based on the findings from the molecular docking studies conducted using the PatchDock server.