Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars.
In the past year, there has been significant progress in the utilization of electrochemical strategies for the determination of harmful substances. Among those, the electrochemical determination of nicotine (NIC) has continued to be of significant interest ascribed to the global health concern of e-cigarette products, nowadays. Electrochemical sensors have become promising tools for the detection of NIC ascribed to their high sensitivity, selectivity, and ease of use. This review article provides a concise overview of the advanced developments in electrochemical sensors for NIC detection using modified functional materials such as carbon-based materials, metal-organic frameworks (MOF), MXene, polymer, and metallic based modifiers. The sensitivity of electrochemical sensors can be improved by modifying them with these conductive materials ascribed to their physical and chemical properties. The review also addresses the challenges and future perspectives in the field, including sensitivity and selectivity improvements, stability and reproducibility issues, integration with data analysis techniques, and emerging trends. In conclusion, this review article may be of interest to researchers intending to delve into the development of functional electrochemical sensors in future studies.