Displaying all 5 publications

Abstract:
Sort:
  1. Peng Y, Fornara DA, Wu Q, Heděnec P, Yuan J, Yuan C, et al.
    Sci Total Environ, 2023 Jan 20;857(Pt 3):159686.
    PMID: 36302428 DOI: 10.1016/j.scitotenv.2022.159686
    Plant litter decomposition is not only the major source of soil carbon and macronutrients, but also an important process for the biogeochemical cycling of trace elements such as iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). The concentrations of plant litter trace elements can influence litter decomposition and element cycling across the plant and soil systems. Yet, a global perspective of the patterns and driving factors of trace elements in plant litter is missing. To bridge this knowledge gap, we quantitatively assessed the concentrations of four common trace elements, namely Fe, Mn, Zn, and Cu, of freshly fallen plant litter with 1411 observations extracted from 175 publications across the globe. Results showed that (1) the median of the average concentrations of litter Fe, Mn, Zn, and Cu were 0.200, 0.555, 0.032, and 0.006 g/kg, respectively, across litter types; (2) litter concentrations of Fe, Zn, and Cu were generally stable regardless of variations in multiple biotic and abiotic factors (e.g., plant taxonomy, climate, and soil properties); and (3) litter Mn concentration was more sensitive to environmental conditions and influenced by multiple factors, but mycorrhizal association and soil pH and nitrogen concentration were the most important ones. Overall, our study provides a clear global picture of plant litter Fe, Mn, Zn, and Cu concentrations and their driving factors, which is important for improving our understanding on their biogeochemical cycling along with litter decomposition processes.
  2. Jin X, Wu F, Wu Q, Heděnec P, Peng Y, Wang Z, et al.
    Heliyon, 2023 Jan;9(1):e12984.
    PMID: 36704269 DOI: 10.1016/j.heliyon.2023.e12984
    Irregular precipitation caused by climate changes has resulted in frequent events of soil drying-rewetting cycles (DWC), which can strongly affect soil carbon (C) and nitrogen (N) cycling, including the fluxes of greenhouse gases (GHGs). The response of soil carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes to DWC events may differ among different ecosystem types and vary with experimental settings and soil properties, but these processes were not quantitatively assessed. Here, we evaluated the responses of soil GHG fluxes to DWC, compared with consistent moisture, as well as the associated driving factors with 424 paired observations collected from 47 publications of lab incubation experiments. Results showed that: (1) DWC significantly decreased soil CO2 emissions by an average of 9.7%, but did not affect the emissions and uptakes of soil CH4 and N2O; (2) DWC effects on soil GHG emissions varied significantly among different ecosystem types, with CO2 emissions significantly decreased by 6.8 and 16.3% in croplands and grasslands soils, respectively, and CH4 and N2O emissions significantly decreased and increased in wetlands and forests soils, respectively; (3) the effects of DWC on CO2 emissions were also positively regulated by organic C and N concentrations, pH, clay concentration, and soil depth, but negatively by C:N ratio and silt concentration, while DWC effects on N2O emissions were negatively controlled by C:N ratio, silt concentration, and soil depth. Overall, our results showed that CO2 emissions were significantly decreased by DWC, while the fluxes of CH4 and N2O were not affected, indicating an overall decrease of GHGs in response to DWC. Our results will be useful for a better understanding of global GHG emissions under future climate change scenario.
  3. Yuan C, Wu F, Wu Q, Fornara DA, Heděnec P, Peng Y, et al.
    Sci Total Environ, 2023 Jun 25;879:163059.
    PMID: 36963687 DOI: 10.1016/j.scitotenv.2023.163059
    Vegetation restoration is a widely used, effective, and sustainable method to improve soil quality in post-mining lands. Here we aimed to assess global patterns and driving factors of potential vegetation restoration effects on soil carbon, nutrients, and enzymatic activities. We synthesized 4838 paired observations extracted from 175 publications to evaluate the effects that vegetation restoration might have on the concentrations of soil carbon, nitrogen, and phosphorus, as well as enzymatic activities. We found that (1) vegetation restoration had consistent positive effects on the concentrations of soil organic carbon, total nitrogen, available nitrogen, ammonia, nitrate, total phosphorus, and available phosphorus on average by 85.4, 70.3, 75.7, 54.6, 58.6, 34.7, and 60.4 %, respectively. Restoration also increased the activities of catalase, alkaline phosphatase, sucrase, and urease by 63.3, 104.8, 125.5, and 124.6 %, respectively; (2) restoration effects did not vary among different vegetation types (i.e., grass, tree, shrub and their combinations) or leaf type (broadleaved, coniferous, and mixed), but were affected by mine type; and (3) latitude, climate, vegetation species richness, restoration year, and initial soil properties are important moderator variables, but their effects varied among different soil variables. Our global scale study shows how vegetation restoration can improve soil quality in post-mining lands by increasing soil carbon, nutrients, and enzymatic activities. This information is crucial to better understand the role of vegetation cover in promoting the ecological restoration of degraded mining lands.
  4. Yue K, De Frenne P, Van Meerbeek K, Ferreira V, Fornara DA, Wu Q, et al.
    Biol Rev Camb Philos Soc, 2022 Dec;97(6):2023-2038.
    PMID: 35811333 DOI: 10.1111/brv.12880
    Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.
  5. Yang Q, Wu F, Peñuelas J, Sardans J, Peng Y, Wu Q, et al.
    Environ Res, 2024 Dec 01;262(Pt 2):119963.
    PMID: 39251176 DOI: 10.1016/j.envres.2024.119963
    The significance of intermittent streams in nutrient loss within forest ecosystems is becoming increasingly critical due to changes in precipitation patterns associated with global climate change. However, few studies have focused on nutrient export from intermittent streams. We conducted continuous sediment collection from intermittent streams from March 2022 to February 2023 to investigate the export pattern and mechanism of sediment-associated nitrogen (N) from intermittent streams of different forest types (composed forest of Castanopsis carlesii (Cas. carlesii) and Cunninghamia lanceolata (C. lanceolata) forests, compared to Cas. carlesii forests). We measured the N concentrations and calculated the export amounts of four common forms of N associated with sediments: total N (TN), dissolved N (DN), nitrate, and ammonia. Our results showed that (1) the annual average exports of TN, DN, nitrate, and ammonia associated with sediments from intermittent streams from both forest types were 273, 1.62, 0.26, and 0.84 kg ha-1, respectively; (2) N export was significantly higher in composite forests of Cas. carlesii and C. lanceolata, compared to Cas. carlesii forests; (3) stream sediment export amount positively affected N export both in composite forests and Cas. carlesii forests; and (4) N export was also controlled by rainfall amount and stream characteristics. Our study quantified sediment-associated N export from intermittent streams among different subtropical forest types, which will enhance our understanding of N dynamics associated with stream hydrological processes in subtropical forests.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links