Displaying all 2 publications

Abstract:
Sort:
  1. Zahra F, Sari DCR, Yuniartha R, Alex, Thamrin MM, Melindah T, et al.
    Med J Malaysia, 2024 Aug;79(Suppl 4):31-37.
    PMID: 39215412
    INTRODUCTION: Ischaemic stroke induces oxidative stress with SOD2 downregulation, and BAX upregulation producing apoptosis. Vitamin D is a fat-soluble hormone that has a neuroprotective effect. The aim of this study is to elucidate the role of vitamin D in memory function, oxidative stress and apoptosis in transient global brain schaemic injury (TGBII) model.

    MATERIALS AND METHODS: TGBII was performed in male Wistar rats (3 to 5 months, 150 to 300 g) which underwent bilateral common carotid artery occlusion (BCCAO) for 20 minutes, then reperfused for 10 days (BCCAO group, n = 6). Two groups of BCCAO were treated with intraperitoneal injection of calcitriol 0.125 μg/kgBW (VD1 group) and 0.5 μg/kgBW (VD2 group). The spatial memory function was tested using a probe test with Morris water maze (MWM). mRNA expression of BAX and SOD2 were assessed by the RT-PCR method. Meanwhile, immunohistochemical staining was used for identification of SOD2 protein. Statistical analysis is tested using one-way ANOVA followed by post-hoc LSD.

    RESULTS: MWM showed a shorter duration in target quadrant of BCCAO group than the SO group, which is associated with BAX upregulation and SOD2 downregulation. The VDtreated groups had longer duration probe test compared to BCCAO. Furthermore, VD-treated groups had a longer duration in probe test with lower mRNA expression of BAX and higher expression of SOD2. However, there was no significant difference in VD1 and VD2. Immunostaining showed a reduced SOD2 signal in pyramidal cell of CA1 area in BCCAO group and ameliorated in VD1 and VD2 groups.

    CONCLUSION: Vitamin D ameliorates memory function and attenuates oxidative stress and apoptosis in the TGBII model.

  2. Yuniartha R, Arfian N, Setyaningsih WAW, Kencana SMS, Sari DCR
    Malays J Med Sci, 2022 Dec;29(6):46-59.
    PMID: 36818894 DOI: 10.21315/mjms2022.29.6.5
    BACKGROUND: Chronic hyperglycaemia of diabetes causes long-term damage and impaired function of multiple organs. However, the pathological changes in the liver following long-term diabetes remain unclear. This study aimed to determine the pathological complications of long-term diabetes in the rat liver.

    METHODS: Intraperitoneal injection of streptozotocin (STZ) was used to induce diabetes in rats at a single dose (60 mg/kg body weight [BW]). Rats were euthanised at 1 month (DM1 group), 2 months (DM2 group) and 4 months (DM4 group) following diabetes induction with six rats in each group. Immunohistochemistry was performed against SOD1, CD68, p53 and p16 antibodies. Messenger RNA (mRNA) expressions of SOD1, SOD2, GPx, CD68, p53, p21 and caspase-3 genes were measured by reverse transcription-polymerase chain reaction.

    RESULTS: Hepatic p53 mRNA expression was significantly higher in DM1, DM2 and DM4 groups compared to the control group. The p21 and caspase-3 mRNA expressions were significantly upregulated in the DM2 and DM4 groups. The p16-positive cells were obviously increased, particularly in the DM4 group. Bivariate correlation analysis showed mRNA expressions of p21 and caspase-3 genes were positively correlated with the p53 gene.

    CONCLUSION: Diabetic rats exhibited increased apoptosis and senescence in the liver following a longer period of hyperglycaemia.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links