In the title compound, C15H16N2S2, the central CN2S2 residue is almost planar (r.m.s. deviation = 0.0354 Å) and forms dihedral angles of 56.02 (4) and 75.52 (4)° with the phenyl and tolyl rings, respectively; the dihedral angle between the aromatic rings is 81.72 (5)°. The conformation about the N-N bond is gauche [C-N-N-C = -117.48 (15)°]. Overall, the mol-ecule has the shape of the letter L. In the crystal packing, supra-molecular chains along the a axis are formed by N-H⋯S(thione) hydrogen bonds whereby the thione S atom accepts two such bonds. The hydrogen bonding leads to alternating edge-shared eight-membered {⋯HNCS}2 and 10-membered {⋯HNNH⋯S}2 synthons. The chains are connected into layers by phen-yl-tolyl C-H⋯π inter-actions; the layers stack along the c axis with no specific inter-actions between them.
In the title compound, C25H26N2O2S2, the central CN2S2 atoms are almost coplanar (r.m.s. deviation = 0.0058 Å). One phenyl ring clearly lies to one side of the central plane, while the other is oriented in the plane but splayed. Despite the different relative orientations, the phenyl rings form similar dihedral angles of 64.90 (3) and 70.06 (3)° with the central plane, and 63.28 (4)° with each other. The benzene ring is twisted with respect to the central plane, forming a dihedral angle of 13.17 (7)°. The S2C=N, N-N and N-N=C bond lengths of 1.2919 (19), 1.4037 (17) and 1.2892 (19) Å, respectively, suggest limited conjugation over these atoms; the configuration about the N-N=C bond is E. An intra-molecular O-H⋯N hydrogen bond is noted. In the crystal, phen-yl-meth-oxy C-H⋯O and phen-yl-phenyl C-H⋯π inter-actions lead to supra-molecular double chains parallel to the b axis. These are connected into a layer via meth-yl-phenyl C-H⋯π inter-actions, and layers stack along the a axis, being connected by weak π-π inter-actions between phenyl rings [inter-centroid distance = 3.9915 (9) Å] so that a three-dimensional architecture ensues.
Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
The title di-thio-carbazate ester, C16H16N2O2S2, comprises two almost planar residues, i.e. the phenyl ring and the remaining 14 non-H atoms (r.m.s. deviation = 0.0410 Å). These are orientated perpendicularly, forming a dihedral angle of 82.72 (5)°. An intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond, leading to an S(6) loop, is noted. An analysis of the geometric parameters is consistent with the mol-ecule existing as the thione tautomer, and the conformation about the C=N bond is E. The thione S and imine H atoms lie to the same side of the mol-ecule, facilitating the formation of inter-molecular N-H⋯S hydrogen bonds leading to eight-membered {⋯HNCS}2 synthons in the crystal. These aggregates are connected by phenyl-C-H⋯O(hy-droxy) inter-actions into a supra-molecular layer in the bc plane; these stack with no directional inter-actions between them. An analysis of the Hirshfeld surface confirms the nature of the inter-molecular inter-actions.
The complete mol-ecule of the title hydrazine carbodi-thio-ate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiII atom is N,S-chelated by two hydrazinecarbodi-thio-ate ligands, which provide a trans-N2S2 donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiII atom being the flap atom. In the crystal, p-tolyl-C-H⋯π(benzene- i Pr), i Pr-C-H⋯π(p-tol-yl) and π-π inter-actions [between p-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.
Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.