Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Mohamed Yusoff AA
    J Cancer Res Ther, 2015 Jul-Sep;11(3):535-44.
    PMID: 26458578 DOI: 10.4103/0973-1482.161925
    Brain tumor is molecularly a heterogeneous group of diseases, and genetic factors seem to play a crucial role in its genesis. Even though multiple alterations in the nuclear-encoded genes such as tumor suppressor and oncogenes are believed to play a key role in brain tumorigenesis, the involvement of the mitochondrial genome to this event remains controversial to date. Mitochondrial DNA (mtDNA) has been suspected to be associated with the carcinogenesis because of its high sensitivity to mutations and inefficient repair mechanisms in comparison to nuclear DNA. Thus, defects in mtDNA could also lead to the development of brain tumor. By virtue of their clonal nature and high copy number, mtDNA mutations may provide a new effective molecular biomarker for the cancer detection. It has been suggested that establishing mtDNA defective pattern might be useful in cancer diagnostics and detection, the prognosis of cancer outcome, and/or the response to certain treatments. This mini-review gives a brief overview on the several aspects of mtDNA, with a particular focus on its role in tumorigenesis and progression of brain tumor. Understanding the role of mitochondria and brain tumor development could potentially translate into therapeutic strategies for patients with these tumors.
  2. Mohamed Yusoff AA, Mohd Khair SZN
    Rev Neurosci, 2024 Aug 20.
    PMID: 39174305 DOI: 10.1515/revneuro-2024-0080
    Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
  3. Tan EH, Yusoff AA, Abdullah JM, Razak SA
    J Pediatr Neurosci, 2012 May;7(2):123-5.
    PMID: 23248692 DOI: 10.4103/1817-1745.102575
    In this report, we describe a 15-year-old Malaysian male patient with a de novo SCN1A mutation who experienced prolonged febrile seizures after his first seizure at 6 months of age. This boy had generalized tonic clonic seizure (GTCS) which occurred with and without fever. Sequencing analysis of voltage-gated sodium channel a1-subunit gene, SCN1A, confirmed a homozygous A to G change at nucleotide 5197 (c.5197A > G) in exon 26 resulting in amino acid substitution of asparagines to aspartate at codon 1733 of sodium channel. The mutation identified in this patient is located in the pore-forming loop of SCN1A and this case report suggests missense mutation in pore-forming loop causes generalized epilepsy with febrile seizure plus (GEFS+) with clinically more severe neurologic phenotype including intellectual disabilities (mental retardation and autism features) and neuropsychiatric disease (anxiety disorder).
  4. Tan EH, Razak SA, Abdullah JM, Mohamed Yusoff AA
    Epilepsy Res, 2012 Dec;102(3):210-5.
    PMID: 22944210 DOI: 10.1016/j.eplepsyres.2012.08.004
    Generalized epilepsy with febrile seizures plus (GEFS+) comprises a group of clinically and genetically heterogeneous epilepsy syndrome. Here, we provide the first report of clinical presentation and mutational analysis of SCN1A gene in 36 Malaysian GEFS+ patients. Mutational analysis of SCN1A gene revealed twenty seven sequence variants (missense mutation and silent polymorphism also intronic polymorphism), as well as 2 novel de-novo mutations were found in our patients at coding regions, c.5197A>G (N1733D) and c.4748A>G (H1583R). Our findings provide potential genetic insights into the pathogenesis of GEFS+ in Malaysian populations concerning the SCN1A gene mutations.
  5. Mohd Khair SZN, Abd Radzak SM, Mohamed Yusoff AA
    Dis Markers, 2021;2021:7675269.
    PMID: 34326906 DOI: 10.1155/2021/7675269
    Cancer is a heterogeneous group of diseases, the progression of which demands an accumulation of genetic mutations and epigenetic alterations of the human nuclear genome or possibly in the mitochondrial genome as well. Despite modern diagnostic and therapeutic approaches to battle cancer, there are still serious concerns about the increase in death from cancer globally. Recently, a growing number of researchers have extensively focused on the burgeoning area of biomarkers development research, especially in noninvasive early cancer detection. Intergenomic cross talk has triggered researchers to expand their studies from nuclear genome-based cancer researches, shifting into the mitochondria-mediated associations with carcinogenesis. Thus, it leads to the discoveries of established and potential mitochondrial biomarkers with high specificity and sensitivity. The research field of mitochondrial DNA (mtDNA) biomarkers has the great potential to confer vast benefits for cancer therapeutics and patients in the future. This review seeks to summarize the comprehensive insights of nuclear genome cancer biomarkers and their usage in clinical practices, the intergenomic cross talk researches that linked mitochondrial dysfunction to carcinogenesis, and the current progress of mitochondrial cancer biomarker studies and development.
  6. Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA
    Asian Pac J Cancer Prev, 2014;15(11):4499-505.
    PMID: 24969876
    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.
  7. Ismail S, Haris K, Abdul Ghani AR, Abdullah JM, Johan MF, Mohamed Yusoff AA
    J Asian Nat Prod Res, 2013 Sep;15(9):1003-12.
    PMID: 23869465 DOI: 10.1080/10286020.2013.818982
    Aloe emodin, one of the active compounds found in Aloe vera leaves, plays an important role in the regulation of cell growth and death. It has been reported to promote the anti-cancer effects in various cancer cells by inducing apoptosis. However, the mechanism of inducing apoptosis by this agent is poorly understood in glioma cells. This research is to investigate the apoptosis and cell cycle arrest inducing by aloe emodin on U87 human malignant glioma cells. Aloe emodin showed a time- and dose-dependent inhibition of U87 cells proliferation and decreased the percentage of viable U87 cells via the induction of apoptosis. Characteristic morphological changes, such as the formation of apoptotic bodies, were observed with confocal microscope by Annexin V-FITC/PI staining, supporting our viability study and flow cytometry analysis results. Our data also demonstrated that aloe emodin arrested the cell cycle in the S phase and promoted the loss of mitochondrial membrane potential in U87 cells that indicated the early event of the mitochondria-induced apoptotic pathway.
  8. Sim SK, Tan YC, Tee JH, Yusoff AA, Abdullah JM
    Turk Neurosurg, 2015;25(4):617-24.
    PMID: 26242340 DOI: 10.5137/1019-5149.JTN.14035-15.1
    This study evaluated the neuroprotective effect of intrathecally infused paclitaxel in the prevention of motoneuron death and mitochondrial dysfunction following brachial plexus avulsion injury.
  9. Yusoff AA, Abdullah J, Abdullah MR, Mohd Ariff AR, Isa MN
    Acta Neurochir (Wien), 2004 Jun;146(6):595-601.
    PMID: 15168228
    Alteration of the tumor suppressor gene p53 is considered to be a critical step in the development of human cancer. Changes in this gene have been detected in a wide range of human tumours, including gliomas. In glioma, the presence of p53 gene alterations has been associated with worse prognosis.
  10. Mohamed Yusoff AA, Mohd Khair SZN, Wan Abdullah WS, Abd Radzak SM, Abdullah JM
    J Cancer Res Ther, 2020 12 22;16(6):1517-1521.
    PMID: 33342822 DOI: 10.4103/jcrt.JCRT_1132_16
    Background and Objective: Meningiomas are among the most common intracranial tumors of the central nervous system. It is widely accepted that the initiation and progression of meningiomas involve the accumulation of nucleus genetic alterations, but little is known about the implication of mitochondrial genomic alterations during development of these tumors. The human mitochondrial DNA (mtDNA) contains a short hypervariable, noncoding displacement loop control region known as the D-Loop. Alterations in the mtDNA D-loop have been reported to occur in most types of human cancers. The purpose of this study was to assess the mtDNA D-loop mutations in Malaysian meningioma patients.

    Materials and Methods: Genomic DNA was extracted from 21 fresh-frozen tumor tissues and blood samples of the same meningioma patients. The entire mtDNA D-loop region (positions 16024-576) was polymerase chain reaction amplified using designed primers, and then amplification products were purified before the direct DNA sequencing proceeds.

    Results: Overall, 10 (47.6%) patients were detected to harbor a total of 27 somatic mtDNA D-loop mutations. Most of these mtDNA mutations were identified in the hypervariable segment II (40.7%), with 33.3% being located mainly in the conserved sequence block II of the D310 sequence. Furthermore, 58 different germline variations were observed at 21 nucleotide positions.

    Conclusion: Our results suggest that mtDNA alterations in the D-loop region may be an important and early event in developing meningioma. Further studies are needed, including validation in a larger patient cohort, to verify the clinicopathological outcomes of mtDNA mutation biomarkers in meningiomas.

  11. Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F
    Neurol Res, 2021 Sep 17.
    PMID: 34533110 DOI: 10.1080/01616412.2021.1975225
    BACKGROUND: Previous studies had reported on the cytotoxic activities of generic antibiotics such as doxycycline (DOXY) and azithromycin (AZI) in multiple types of human cancers. Given that resistance to standard anti-glioblastoma multiforme (GBM) drug [temozolomide (TMZ)] is common and inevitable, alternative candidates are greatly needed.

    PURPOSE AND METHOD: The present study was undertaken to explore the cytotoxicity and anticancer effects of DOXY and AZI on human GBM U87 cells via 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), Hoechst, Annexin V-FITC/PI, and clonogenic assays. CompuSyn software was used to determine the combination index (CI) for DOXY+AZI.

    RESULT: Individual treatment with DOXY and AZI decreased U87 cell viability in dose- and time-dependent, and quantitatively comparable to TMZ. Nevertheless, combinations of both antibiotics evidenced antagonistic behaviour in U87 cells. Increased apoptotic event was also observed with the individual treatment of DOXY and AZI. Furthermore, the proliferative and clonogenic capability of 21-day survived U87 cells was completely terminated by DOXY and AZI, but not TMZ.

    CONCLUSION: The antiproliferative and apoptosis-inducing activity exhibited by both antibiotics against U87 cells demonstrates their potential as a likely alternative to combat GBM. It would be interesting to find out more about their molecular players and cytotoxic effects in different types of GBM cells, including glioma stem cells (GSCs).

  12. Mohamed Yusoff AA, Zulfakhar FN, Sul’ain MD, Idris Z, Abdullah JM
    Asian Pac J Cancer Prev, 2016 12 01;17(12):5195-5201.
    PMID: 28125199
    Background: Brain tumors, constituting one of the most deadly forms of cancer worldwide, result from the accumulation of multiple genetic and epigenetic alterations in genes and signaling pathways. Isocitrate dehydrogenase enzyme isoform 1 (IDH1) mutations are frequently identified in primary brain tumors and acute myeloid leukemia. Studies on IDH1 gene mutations have been extensively performed in various populations worldwide but not in Malaysia. This work was conducted to study the prevalence of IDH1 c.395G>A (R132H) hotspot mutations in a group of Malaysian patients with brain tumors in order to gain local data for the IDH1 mutation profile in our population. Methods: Mutation analysis of c.395G>A (R132H) of IDH1 was performed in 40 brain tumor specimens by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP) and then verified by direct sequencing. Associations between the IDH1 c.395G>A (R132H) mutation and clinicopathologic characteristics were also analyzed. Results: The IDH1 c.395G>A (R132H) mutation was detected in 14/40 patients (35%). A significant association was found with histological tumor types, but not with age, gender and race. Conclusions: IDH1 is frequently mutated and associated with histological subtypes in Malay brain tumors.
  13. Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM, Idris Z
    Brain Tumor Res Treat, 2018 Apr;6(1):31-38.
    PMID: 29717568 DOI: 10.14791/btrt.2018.6.e5
    BACKGROUND: Mitochondria are major cellular sources of reactive oxygen species (ROS) generation which can induce mitochondrial DNA damage and lead to carcinogenesis. The mitochondrial 10398A>G alteration in NADH-dehydrogenase subunit 3 (ND3) can severely impair complex I, a key component of ROS production in the mitochondrial electron transport chain. Alteration in ND3 10398A>G has been reported to be linked with diverse neurodegenerative disorders and cancers. The aim of this study was to find out the association of mitochondrial ND3 10398A>G alteration in brain tumor of Malaysian patients.

    METHODS: Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing.

    RESULTS: Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01).

    CONCLUSION: For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.

  14. Mohd Khair SZN, Ismail AS, Embong Z, Mohamed Yusoff AA
    J Ophthalmic Vis Res, 2019 5 23;14(2):171-178.
    PMID: 31114654 DOI: 10.4103/jovr.jovr_210_17
    Purpose: To determine the mutational analyses of familial exudative vitreoretinopathy (FEVR)-causing genes in Malay patients with retinopathy of prematurity (ROP) to obtain preliminary data for gene alterations in the Malay community.

    Methods: A comparative cross-sectional study involving 86 Malay premature babies (ROP = 41 and non-ROP = 45) was performed from September 2012 to December 2014. Mutation analyses in (FEVR)-causing genes (NDP, FZD4, LRP5, and TSPAN12) were performed using DNA from premature babies using polymerase chain reaction (PCR) and direct sequencing. Sequencing results were confirmed with PCR-Restriction Fragment Length Polymorphism (RFLP).

    Results: We found variants of FZD4, LRP5, and TSPAN12 in this study. One patient from each group showed a non-synonymous alteration in FZD4, c.502C>T (p.P168S). A synonymous variant of LRP5 [c.3357G>A (p.V1119V)] was found in 30 ROP and 28 non-ROP patients. Two variants of TSPAN12, c.765G>T (p.P255P) and c.*39C>T (3'UTR), were also recorded (29 and 21 in ROP, 33 and 26 in non-ROP, respectively). Gestational age and birth weight were found to be significantly associated with ROP (P value < 0.001 and 0.001, respectively).

    Conclusion: Analysis of data obtained from the ROP Malay population will enhance our understanding of these FEVR-causing gene variants. The c.3357G>A (p.V1119V) variant of LRP5, and c.765G>T (p.P255P) and c.*39C>T variants of TSPAN12 could be common polymorphisms in the Malay ethnic group; however, this requires further elucidation. Future studies using larger groups and higher numbers of advanced cases are necessary to evaluate the relationship between FEVR-causing gene variants and the risk of ROP susceptibility in Malaysian infants.

  15. Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM, Idris Z, Lee HC
    J Chin Med Assoc, 2020 Sep;83(9):838-844.
    PMID: 32732530 DOI: 10.1097/JCMA.0000000000000401
    BACKGROUND: The 4977-bp common deletion (mtDNA) is a well-established mitochondrial genome alteration that has been described in various types of human cancers. However, to date, no studies on mtDNA in brain tumors have been reported. The present study aimed to determine mtDNA prevalence in common brain tumors, specifically, low- and high-grade gliomas (LGGs and HGGs), and meningiomas in Malaysian cases. Its correlation with clinicopathological parameters was also evaluated.

    METHODS: A total of 50 patients with pathologically confirmed brain tumors (13 LGGs, 20 HGGs, and 17 meningiomas) were enrolled in this study. mtDNA was detected by using polymerase chain reaction (PCR) technique and later confirmed via Sanger DNA sequencing.

    RESULTS: Overall, mtDNA was observed in 16 (32%) patients and it was significantly correlated with the type of tumor group and sex, being more common in the HGG group and in male patients.

    CONCLUSION: The prevalence of mtDNA in Malaysian glioma and meningioma cases has been described for the first time and it was, indeed, comparable with previously published studies. This study provides initial insights into mtDNA in brain tumor and these findings can serve as new data for the global mitochondrial DNA mutations database.

  16. Mohamed Yusoff AA, Abd Radzak SM, Mohd Khair SZN, Abdullah JM
    Exp Oncol, 2021 06;43(2):159-167.
    PMID: 34190524
    BACKGROUND: To date, BRAF mutations in brain tumor patients have not been characterized in the Malaysian population. Based on the numerous reported studies, there are main mutations that exist in BRAF gene in various types of cancers. A missense mutation in codon 600 of the BRAF nuclear oncogene (BRAFV600E) is the most prevalent hotspot point mutation that has been identified in multiple human malignancies.

    AIM: We here aimed to find out the frequency of BRAFV600E mutation in a series of Malaysian patients with brain tumors and if any association exists between BRAFV600E mutation and clinicopathological features of patients.

    MATERIAL AND METHODS: Fresh frozen tumor tissue samples from 50 Malaysian brain tumor patients were analyzed for BRAFV600E mutational status, and its correlation with clinicopathological features (including age, gender, and tumor localization such as intra-axial: within the brain substance or extra-axial: outside the brain substance) was examined.

    RESULTS: The overall BRAFV600E mutation frequency was determined to be 22% (in 11 of 50 patients). BRAFV600E was significantly correlated with the tumor location group, which shows BRAFV600E was more frequent in the intra-axial tumor than the extra-axial tumor group. In this study, we also observed that male patients were slightly more susceptible to BRAFV600E mutation, and this mutation was predominant in patients of the age group 

  17. Hassan SN, Mohamed Yusoff AA, Idris Z, Mohd Redzwan N, Ahmad F
    Fundam Clin Pharmacol, 2023 Oct;37(5):918-927.
    PMID: 37069134 DOI: 10.1111/fcp.12900
    The resistance, plasticity and heterogeneity of cancer cells, including glioblastoma (GB) cells, have prompted the investigation of various agents for possible adjuncts and alternatives to existing therapies. This includes a macrolide antibiotic, azithromycin (AZI). It possesses intriguing anticancer properties in a range of cancer models in vitro, such as antiproliferative, pro-apoptotic, anti-autophagy and anti-angiogenic effects. In fact, AZI is renowned for its ability to eradicate cancer stem cells by inhibiting mitochondrial biogenesis and respiration. AZI-containing regimens in cancer patients for different purposes have shown favourable (i.e., attributed to its antibacterial activity) and unfavourable outcomes. Whilst its direct anticancer effects have yet to be clinically proven. To that end, this review provides a summary of AZI anticancer studies and delineates its potential activities in overcoming the challenges of GB.
  18. Sulong S, Yusoff AA, Zainuddin N, Abdullah JM, Pannatil JG, Jaafar H, et al.
    Malays J Med Sci, 2004 Jan;11(1):37-43.
    PMID: 22977358 MyJurnal
    The new millennium has been regarded as a genomic era. A lot of researchers and pathologists are beginning to understand the scientific basis of molecular genetics and relates with the progression of the diseases. Central nervous system (CNS) tumours are among the most rapidly fatal of all cancers. It has been proposed that the progression of malignant tumours may result from multi-step of genetic alterations, including activation of oncogenes, inactivation of tumour suppressor genes and also the presence of certain molecular marker such as telomerase activity. In this paper, we review some recent data from the literature, including our own studies, on the molecular genetics analysis in CNS tumours. Our studies have shown that two types of tumour suppressor genes, p53 and PTEN were involved in the development of these tumours but not in p16 gene among the patients from Hospital Universiti Sains Malaysia (HUSM). Telomerase activity also has been detected in various types of CNS tumours. Thus, it is important to assemble all data which related to this study and may provide as a vital information in a new approach to neuro-oncology studies in Malaysia.
  19. Nor Nazli NA, Muthuraju S, Ahmad F, Mohamed Yusoff AA, Jaafar H, Shamsuddin S, et al.
    Malays J Med Sci, 2023 Feb;30(1):92-106.
    PMID: 36875187 DOI: 10.21315/mjms2023.30.1.8
    BACKGROUND: The present study aimed to understand the characterisation of human hippocampal astrocyte following hypoxia exposure. Based on the preliminary screening, 15 min was chosen as the time point and the cells were exposed to different oxygen percentages.

    METHODS: The Trypan blue viability assay used to examine cell death. Immunofluorescence assay, glial fibrillary acidic protein (GFAP) was used to portray the morphology of astrocytes. The hypoxia-inducible factor 1 (HIF-1) staining was performed to confirm hypoxia induced cell death and there was a dramatic expression of HIF-1α displayed in exposed astrocyte cells compared to the control. In molecular level, genes were chosen, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH), GFAP, HIF-1α and B-cell lymphoma 2 (Bcl-2) and ran the reverse transcription-polymerase chain reaction (RT-PCR).

    RESULTS: Microscope revealed a filamentous and clear nucleus appearance in a control whereas the rupture nuclei with no rigid structure of the cell were found in the 3% oxygen. The control and hypoxia cells were also stained with the annexin V-fluorescein isothiocyanate (annexin V-FITC). Fluorescence microscope reveals astrocyte cells after hypoxia showed higher expression of nuclei but not in control. Merging PI and FITC showed the differences of nuclei expression between the control and hypoxia. In the molecular analysis, there were significant changes of GFAP, HIF-1α and Bcl-2 in hypoxia exposed cells when compared to the control group.

    CONCLUSION: Cells that were exposed to hypoxia (3% oxygen for 15 min) clearly showed damage. General view of human hippocampal astrocyte genomic response to hypoxia was obtained.

  20. Al-Khreisat MJ, Ismail NH, Tabnjh A, Hussain FA, Mohamed Yusoff AA, Johan MF, et al.
    Diagnostics (Basel), 2023 Jun 15;13(12).
    PMID: 37370963 DOI: 10.3390/diagnostics13122068
    Burkitt lymphoma (BL) is a form of B-cell malignancy that progresses aggressively and is most often seen in children. While Epstein-Barr virus (EBV) is a double-stranded DNA virus that has been linked to a variety of cancers, it can transform B lymphocytes into immortalized cells, as shown in BL. Therefore, the estimated prevalence of EBV in a population may assist in the prediction of whether this population has a high risk of increased BL cases. This systematic review and meta-analysis aimed to estimate the prevalence of Epstein-Barr virus in patients with Burkitt lymphoma. Using the appropriate keywords, four electronic databases were searched. The quality of the included studies was assessed using the Joanna Briggs Institute's critical appraisal tool. The results were reported as percentages with a 95% confidence interval using a random-effects model (CI). PROSPERO was used to register the protocol (CRD42022372293), and 135 studies were included. The prevalence of Epstein-Barr virus in patients with Burkitt lymphoma was 57.5% (95% CI: 51.5 to 63.4, n = 4837). The sensitivity analyses demonstrated consistent results, and 65.2% of studies were of high quality. Egger's test revealed that there was a significant publication bias. EBV was found in a significantly high proportion of BL patients (more than 50% of BL patients). This study recommends EBV testing as an alternative for predictions and the assessment of the clinical disease status of BL.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links