The presence of ammoniacal nitrogen (N-NH3) in leachate is one of the problems normally faced by landfill operators. Slow leaching of wastes producing nitrogen and no significant mechanism for transformation of N-NH3 in the landfills causes a high concentration of ammoniacal nitrogen in leachate over a long period of time. A literature review showed that the removal of ammoniacal nitrogen from leachate was not well documented and to date, there were limited studies in Malaysia on this aspect, especially in adsorption treatment. The main objective of the present study was to investigate the suitability of activated carbon, limestone and a mixture of both materials as a filtering medium, in combination with other treatments capable of attenuating ammoniacal nitrogen which is present in significant quantity (between 429 and 1909 mg L(-1)) in one of the landfill sites in Malaysia. The results of the study show that about 40% of ammoniacal nitrogen with concentration of more than 1000 mg L(-1) could be removed either by activated carbon or a mixture of carbon with limestone at mixture ratio of 5:35. This result shows that limestone is potentially useful as a cost-effective medium to replace activated carbon for ammoniacal nitrogen removal at a considerably lower cost.
A study was conducted to investigate the efficiency of coagulation and flocculation processes for removing colour from a semi-aerobic landfill leachate from one of the landfill sites in Malaysia. Four types of coagulant namely aluminium (III) sulphate (alum), ferric (III) chloride, ferrous (II) sulphate and ferric (III) sulphate were studied using standard jar test apparatus. Results indicated that ferric chloride was superior to the other coagulants and removed 94% of colour at an optimum dose of 800 mg/l at pH 4. The effect of coagulant dosages on colour removal showed similar trend as for COD, turbidity and suspended solids. This suggested that colour in landfill leachate was mainly contributed by organic matters with some insoluble forms that exhibited turbidity and suspended solids readings. The results from this study suggested that ferric chloride could be a viable coagulant in managing colour problems associated with landfill leachate.