Displaying all 2 publications

Abstract:
Sort:
  1. Zainal SFFS, Aziz HA, Ramli SF, Omar FM
    Water Environ Res, 2022 Jan;94(1):e1667.
    PMID: 34842319 DOI: 10.1002/wer.1667
    This study was conducted to evaluate the effect of the toxicity levels of the coagulation and flocculation process on raw and treated leachate using acute toxicity tests. Tin tetrachloride (SnCl4 ) and the Jatropha curcas (JC) seed were used as coagulant and coagulant aid to remove concentrated suspended solids, SS (534 mg/L), color (19,297 Pt-Co), and chemical oxygen demand (COD) (4188 mg/L) in a stabilized landfill leachate. The toxicity effects on local red tilapia fish (Oreochromis niloticus) were investigated, which involved three main steps, namely, acclimatization, range-finding test, and short-term definitive test. The presence of JC seed (0.9 g/L) as a flocculant reduced the dosage of SnCl4 from 11.1 to 8.5 g/L and exhibited good removals of 99.78%, 98.53%, and 74.29%, respectively, for SS, color, and COD. The toxicity test indicated that only five fish died in the first 12 h for the treated sample compared with seven deaths for untreated leachate. In 96 h, a total of 42 and 31 mortality rates were noted for the raw and treated leachate samples, respectively. The treated sample could reduce the toxicity effects to the tested tilapia fish and is safe to be discharged at appropriate dilution concentrations. PRACTITIONER POINTS: Coagulation-flocculation by Tin (IV) chloride and Jatropha Curcas (JC) was investigated. Almost complete reduction of SS was obtained at 8.5 g/L of SnCl4 and 0.9 g/L of JC as flocculant. The toxicity effect was evaluated using red tilapia (Oreochromis niloticus) fish as the indicator. Treated leachate was considered acceptable as the number of dead fish was lower than the untreated leachate.
  2. Zainal SFFS, Aziz HA, Omar FM, Alazaiza MYD
    Chemosphere, 2021 Dec;285:131484.
    PMID: 34261011 DOI: 10.1016/j.chemosphere.2021.131484
    Stabilised leachate usually contains lower concentration of organic compounds than younger leachate; it has low biodegradability and generally unsuitable for biological treatment. The effectiveness of tetravalent metal salts in a coagulation-flocculation (C-F) process is still inclusive. Application of natural coagulants as an alternative to the chemical could reduce chemical usage, is less costly, and environmentally friendly. Hence, the objective of the current research is to examine the possibility of reducing the amount of Tin (IV) chloride (SnCl4) as a primary coagulant by adding Jatropha curcas (JC) as a flocculant as a sole treatment through the C-F process in treating concentrated suspended solids (SS) (547 mg/L), colour (19,705 Pt-Co) and chemical oxygen demand (COD) (4202 mg/L) in stabilised landfill leachate. The work also aims to evaluate the sludge properties after treatment. Functional groups, such as carboxylic acids, hydroxyl and amine/amino compounds (protein contents), were detected in the JC seed to facilitate the C-F process by neutralising the charge pollutant in water and cause the possibility of hydrogen bonding interaction between molecules. The combination of JC seed (0.9 g/L) as a flocculant reduced the dosage of SnCl4 as a coagulant from 11.1 g/L to 8.5 g/L with removals of 99.78%, 98.53% and 74.29% for SS, colour and COD, respectively. The presence of JC improved the sludge property with good morphology; the particles were in a rectangular shape, had clumps and strong agglomeration. These properties of sludge proved that JC seed could enhance the adsorption and bridging mechanism in the C-F procedure.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links