The title chalcones, C31H23NO and C35H23NO, were synthesized via Claisen-Schmidt condensation reactions. Both structures were solved and refined using single-crystal X-ray diffraction data and optimized at the ground state using the density functional theory (DFT) method with the B3LYP/6-311++G(d,p) level. In the crystals, π-π inter-ations and weak C-H⋯O and C-H⋯π inter-actions are observed. The effect of these inter-molecular inter-actions in the solid state can be seen by the difference between the experimental and theoretical optimized geometrical parameters. The structures have also been characterized by UV-Vis spectroscopy. The smallest energy gaps of 2.86 and 2.96 eV enhance the nonlinear responses of such mol-ecular systems. Hirshfeld surface analyses and 2D (two-dimensional) fingerprint plots were used to qu-antify the inter-molecular inter-actions present in the crystal, indicating that these are the most important contribution to the crystal packing.
The title compounds, C24H18O2 and C24H17FO2, were synthesized using the Claisen-Schmidt condensation method and characterized by UV-Vis spectroscopy. Weak inter-molecular C-H⋯O, C-H⋯π and π-π hydrogen-bonding inter-actions help to stabilize the crystal structures of both compounds. The geometrical parameters obtained from the mol-ecular structure were optimized using density functional theory (DFT) calculations at the B3LYP/6-311++G(d,p) level, showing a good correlation with the experimental results. The small HOMO-LUMO energy gaps of 3.11 and 3.07 eV enhances the non-linear responses of these mol-ecular systems.
The mol-ecular and crystal structure of two new chalcone derivatives, (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen-yl]prop-2-en-1-one, C28H25NO, (I), and (E)-1-(anthracen-9-yl)-3-[4-(di-phenyl-amino)-phen-yl]prop-2-en-1-one, C35H25NO, (II), with the fused-ring system at the same position are described. In the crystals of (I) and (II), the mol-ecules are linked via C-H⋯O hydrogen bonds into inversion dimers, forming R22(22) and R22(14) ring motifs, respectively. Weak inter-molecular C-H⋯π inter-actions further help to stabilize the crystal structure, forming a two-dimensional architecture. The mol-ecular structures are optimized using density functional theory (DFT) at B3LYP/6-311 G++(d,p) level and compared with the experimental results. The smallest HOMO-LUMO energy gaps of (I) (exp . 2.76 eV and DFT 3.40 eV) and (II) (exp . 2.70 eV and DFT 3.28 eV) indicates the suitability of these crystals in optoelectronic applications. All inter-molecular contacts and weaker contributions involved in the supra-molecular stabilization are investigated using Hirshfeld surface analysis. The mol-ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol-ecules.
The title chalcone compounds, C27H18O (I) and C33H20O (II), were synthesized using a Claisen-Schmidt condensation. Both compounds display an s-trans configuration of the enone moiety. The crystal structures feature inter-molecular C-H⋯O and C-H⋯π inter-actions. Quantum chemical analysis of density functional theory (DFT) with a B3LYP/6-311++G(d,p) basis set has been employed to study the structural properties of the compound. The effect of the inter-molecular inter-actions in the solid state are responsible for the differences between the experimental and theoretical optimized geometrical parameters. The small HOMO-LUMO energy gap in (I) (exp : 3.18 eV and DFT: 3.15 eV) and (II) (exp : 2.76 eV and DFT: 2.95 eV) indicates the suitability of these compounds for optoelectronic applications. The inter-molecular contacts and weak contributions to the supra-molecular stabilization are analysed using Hirshfeld surface analysis.
The title compound, C31H20O, was synthesized using a Claisen-Schmidt condensation. The enone group adopts an s-trans conformation and the anthracene ring systems are twisted at angles of 85.21 (19) and 83.98 (19)° from the enone plane. In the crystal, mol-ecules are connected into chains along [100] via weak C-H⋯π inter-actions. The observed band gap of 3.03 eV is in excellent agreement with that (3.07 eV) calculated using density functional theory (DFT) at the B3LYP/6-311++G(d,p) level. The Hirshfeld surface analysis indicates a high percentage of C⋯H/H⋯C (41.2%) contacts in the crystal.
The crystal structures of (E)-1-(anthracen-9-yl)-3-(3H-indol-2-yl)prop-2-en-1-one, C25H17NO, and (E)-1-(anthracen-9-yl)-3-[4-(di-methyl-amino)-naphthalen-1-yl]prop-2-en-1-one, C29H23NO, are reported. In each case the anthracene ring system and pendant ring system are almost perpendicular to each other [dihedral angles = 75.57 (7)° and 70.26 (10)°, respectively]. In the extended structures, weak N-H⋯O, C-H⋯O and C-H⋯π inter-actions influence the centrosymmetric crystal packing. Density functional theory calculations were carried out using a 6-311 G++(d,p) basis set and the calculated structures are in good agreement with the crystal structures. The compounds were also characterized by UV-Vis absorption spectroscopy and the smallest (HOMO-LUMO) energy gaps of 2.89 and 2.54 eV indicate the enhanced non-linear responses (inter-molecular charge transfers) of these systems.
The structures of two new anthracenyl chalcones, namely (E)-1-(anthracen-9-yl)-3-(4-nitro-phen-yl)prop-2-en-1-one, C23H15NO3, and (E)-1-(anthracen-9-yl)-3-(4-iodo-phen-yl)prop-2-en-1-one, C23H15IO are reported. A structural comparative study between the two chalcones was performed and some effects on the geometrical parameters, such as planarity and dihedral angles, are described. The mol-ecular geometry was determined by single-crystal X-ray diffraction, and density functional theory (DFT) at B3LYP with the 6-311++G(d,p) basis set was applied to optimize the ground-state geometry. In addition, inter-molecular inter-actions responsible for the crystal packing were analysed. The electronic properties, such as excitation energies and HOMO-LUMO energies were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The mol-ecular electrostatic potential (MEP) was also investigated at the same level of theory in order to identify and qu-antify the possible reactive sites.
Two organometallic compounds known as (E)-1-ferrocenyl-(3-fluorophenyl)prop-2-en-1-one (Fc1) and (E)-1-ferrocenyl-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one (Fc2) are designed and synthesized for application in dye-sensitized solar cell (DSSC) based on a donor-π-acceptor (D-π-A) architecture. By strategically introducing a methoxy group into the acceptor side of the compound, Fc2 which has adopted a D-π-A-AD structure are compared with the basic D-π-A structure of Fc1. Both compounds were characterized by utilizing the IR, NMR and UV-Vis methods. Target compounds were further investigated by X-ray analysis and studied computationally using Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) approaches to explore their potential performances in DSSCs. An additional methoxy group has been proven in enhancing intramolecular charge transfer (ICT) by improving the planarity of Fc2 backbone. This good electronic communication leads to higher HOMO energy level, larger dipole moment and better short-circuit current density (Jsc) values. Eventually, the presence of methoxy group in Fc2 has improved the conversion efficiency as in comparison to Fc1 under the same conditions.
The Ultraviolet-visible (UV-Vis) spectra indicate that anthracenyl chalcones (ACs) have high maximum wavelengths and good transparency windows for optical applications and are suitable for optoelectronic applications owing to their HOMO-LUMO energy gaps (2.93 and 2.76 eV). Different donor substituents on the AC affect their dipole moments and nonlinear optical (NLO) responses. The positive, negative, and neutral electrostatic potential regions of the molecules were identified using molecular electrostatic potential (MEP). The stability of the molecule on account of hyperconjugative interactions and accompanying charge delocalization was analyzed using natural bond orbital (NBO) analysis. Open and closed aperture Z-scans were performed using a continuous-wave frequency-doubled diode-pumped solid-state (DPSS) laser to measure the nonlinear absorption and nonlinear refractive index coefficients, respectively. The valley-to-peak profile of AC indicated a negative nonlinear refractive index coefficient. The obtained single crystals possess reverse saturation absorption due to excited-state absorption. The structural and nonlinear optical properties of the molecules have been discussed, along with the role of anthracene substitution for enhancing the nonlinear optical properties. The calculated third-order susceptibility value was 1.10 x10-4 esu at an intensity of 4.1 kW/cm2, higher than the reported values for related chalcone derivatives. The NLO response for both ACs offers excellent potential in optical switching and limiting applications.