Displaying all 3 publications

Abstract:
Sort:
  1. Gul Zaman H, Baloo L, Kutty SR, Aziz K, Altaf M, Ashraf A, et al.
    Environ Sci Pollut Res Int, 2023 Jan;30(3):6216-6233.
    PMID: 35989404 DOI: 10.1007/s11356-022-22438-6
    Heavy metal contamination has increased over the globe, causing significant environmental issues owing to direct and indirect releases into water bodies. As a result, metal removal from water entities must be addressed soon. Various adsorbents such as MOFs and chitosan have demonstrated promising results in water treatment. The present study prepared a composite material (chitosan-UiO-66-glycidyl methacrylate MOF) by a microwave-assisted method. The structure and morphology of the chitosan-MOF composite were studied using FE-SEM, EDX, XRD, BET, FT-IR, and TGA techniques. In addition, the adsorption of Pb(II) from aqueous solution onto the chitosan-MOF composite was analyzed in a batch study concerning pH, contact time, initial metal ion concentration, and adsorbent dosage. The composite has a large surface area of 867 m2/g with a total pore volume of 0.51 cm3/g and thermal stability of up to 400 [Formula: see text]. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Langmuir model showed an excellent fit with the adsorption data (R2 = 0.99) and chi-squared (X2 = 3.609). The adsorption process was a spontaneous exothermic reaction and the pseudo-second-order rate equation fitted the kinetic profile well. Moreover, the composite is recyclable, retaining 83.45% of its removal effectiveness after 5 consecutive cycles, demonstrating it as a sustainable adsorbent for metal recovery. This study introduces a novel synthesized composite with enhanced recyclability and a higher potential for eliminating pollutants from industrial wastewater.
  2. Gul Zaman H, Baloo L, Pendyala R, Singa PK, Ilyas SU, Kutty SRM
    Materials (Basel), 2021 Dec 10;14(24).
    PMID: 34947202 DOI: 10.3390/ma14247607
    A large volume of produced water (PW) has been produced as a result of extensive industrialization and rising energy demands. PW comprises organic and inorganic pollutants, such as oil, heavy metals, aliphatic hydrocarbons, and radioactive materials. The increase in PW volume globally may result in irreversible environmental damage due to the pollutants' complex nature. Several conventional treatment methods, including physical, chemical, and biological methods, are available for produced water treatment that can reduce the environmental damages. Studies have shown that adsorption is a useful technique for PW treatment and may be more effective than conventional techniques. However, the application of adsorption when treating PW is not well recorded. In the current review, the removal efficiencies of adsorbents in PW treatment are critically analyzed. An overview is provided on the merits and demerits of the adsorption techniques, focusing on overall water composition, regulatory discharge limits, and the hazardous effects of the pollutants. Moreover, this review highlights a potential alternative to conventional technologies, namely, porous adsorbent materials known as metal-organic frameworks (MOFs), demonstrating their significance and efficiency in removing contaminants. This study suggests ways to overcome the existing limitations of conventional adsorbents, which include low surface area and issues with reuse and regeneration. Moreover, it is concluded that there is a need to develop highly porous, efficient, eco-friendly, cost-effective, mechanically stable, and sustainable MOF hybrids for produced water treatment.
  3. Dhami S, Nurmatov U, Arasi S, Khan T, Asaria M, Zaman H, et al.
    Allergy, 2017 Nov;72(11):1597-1631.
    PMID: 28493631 DOI: 10.1111/all.13201
    BACKGROUND: The European Academy of Allergy and Clinical Immunology (EAACI) is in the process of developing Guidelines on Allergen Immunotherapy (AIT) for Allergic Rhinoconjunctivitis. To inform the development of clinical recommendations, we undertook a systematic review to assess the effectiveness, cost-effectiveness, and safety of AIT in the management of allergic rhinoconjunctivitis.

    METHODS: We searched nine international biomedical databases for published, in-progress, and unpublished evidence. Studies were independently screened by two reviewers against predefined eligibility criteria and critically appraised using established instruments. Our primary outcomes of interest were symptom, medication, and combined symptom and medication scores. Secondary outcomes of interest included cost-effectiveness and safety. Data were descriptively summarized and then quantitatively synthesized using random-effects meta-analyses.

    RESULTS: We identified 5960 studies of which 160 studies satisfied our eligibility criteria. There was a substantial body of evidence demonstrating significant reductions in standardized mean differences (SMD) of symptom (SMD -0.53, 95% CI -0.63, -0.42), medication (SMD -0.37, 95% CI -0.49, -0.26), and combined symptom and medication (SMD -0.49, 95% CI -0.69, -0.30) scores while on treatment that were robust to prespecified sensitivity analyses. There was in comparison a more modest body of evidence on effectiveness post-discontinuation of AIT, suggesting a benefit in relation to symptom scores.

    CONCLUSIONS: AIT is effective in improving symptom, medication, and combined symptom and medication scores in patients with allergic rhinoconjunctivitis while on treatment, and there is some evidence suggesting that these benefits are maintained in relation to symptom scores after discontinuation of therapy.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links