Displaying all 4 publications

Abstract:
Sort:
  1. Hassan SR, Zaman NQ, Dahlan I
    Prep Biochem Biotechnol, 2020;50(3):234-239.
    PMID: 31762367 DOI: 10.1080/10826068.2019.1692214
    Recycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT). The analysis using kinetic study was carried out under mesophilic conditions (37 ± 2 °C) and influent COD concentrations (1000-4000 mg L-1), to prove its practicability towards RPME treatment. First-order kinetic model was used to clarify the behavior of RPME anaerobic digestion under different OLRs (0.14-4.00 g COD L-1 d-1) and HRT (1-7 d). The result shows that the highest COD removal efficiency and methane production rate were recorded to be 98.07% and 2.2223 L CH4 d-1, respectively. This result was further validated by evaluating the biokinetic coefficients (reaction rate constant (k) and maximum biogas production (ym)), which gave values of k = 0.57 d-1 and ym = 0.331 L d-1. This kinetic data concludes that MAHB presented satisfactory performance towards COD removal with relatively high methane production, which can be further utilized as on-site energy supply.
  2. Mojiri A, Aziz HA, Zaman NQ, Aziz SQ, Zahed MA
    J Environ Manage, 2014 Jun 15;139:1-14.
    PMID: 24662109 DOI: 10.1016/j.jenvman.2014.02.017
    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively.
  3. Ghani ZA, Yusoff MS, Zaman NQ, Zamri MFMA, Andas J
    Waste Manag, 2017 Apr;62:177-187.
    PMID: 28274782 DOI: 10.1016/j.wasman.2017.02.026
    This study determined the optimum conditions for preparation and adsorptive treatment of landfill leachate from banana pseudo-stem based activated carbon. Response surface methodology (RSM) based on Box-Behnken was applied to optimize the combination effect of three important reaction variables, i.e. activation temperature (°C), activation time and impregnation ratio (IR). The reaction was performed via a single step activation with ZnCl2 in a closed activation system. A series of 17 individual experiments were conducted and the results showed that the RSM based on BBD is very applicable for adsorptive removal of pollutants from landfill leachate treatment. The optimum conditions obtained by Design of Experiments (DOE) was at 761°C activation temperature, 87min activation time and 4.5g/g impregnation ratio with product yield (27%), iodine number (1101mg/g), color removal (91.2%) and COD removal (83.0%).
  4. Mak TMW, Yu IKM, Xiong X, Zaman NQ, Yaacof N, Hsu SC, et al.
    Chemosphere, 2021 Jul;274:129750.
    PMID: 33549880 DOI: 10.1016/j.chemosphere.2021.129750
    To tackle the crisis associated with the rising commercial food waste generation, it is imperative to comprehend how corporates' recycling behaviour is influenced by different industry structures and economies. This study aims to fill in the information gap that various factors might be affecting corporates' recycling behaviour in two different economies due to environmental inequality by comparing upper-middle-income region (Malaysia) and high-income region (Hong Kong), respectively. A questionnaire survey regarding food waste management according to the Theory of Planned Behaviour was conducted with representatives coming from diverse industries of the hotel, food and beverage, and property management. The questionnaire responses were evaluated based on quantitative structural equation modelling and correlation analysis. The analysis results showed that the model fit the data well, explaining 78% of the variance in recycling behaviour. The findings demonstrated that the most substantial factor on individual's recycling intention by Malaysian commercial food waste generators was perceived behavioural control, and logistics and management incentives. Subjective norms demonstrated significant and adverse effects on the behaviour of food waste recycling. The variable of administrative incentives and corporate support presented strong positive correlations with moral attitudes as well as logistics and management incentives. Hotel industries from both Hong Kong and Malaysia have a higher acceptance level on human resources regarding food waste recycling. In comparison, food and beverage industries from both regions have a lower acceptance level. These findings could enrich our knowledge of the concerns in establishing regional policy strategies to encourage economic behavioural changes for sustainable development.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links