Nanotechnology has provided new opportunities for the food industry with its applications in food packaging. The addition of nanoparticles, such as clay, silver and copper, can improve the mechanical and antimicrobial properties of food packaging. However, nanoparticles may have an adverse impact on human health. This has led to legislative and regulatory concerns. The inhibitory effects of nano packaging on different microorganisms, such as Salmonella, E. coli, and molds, have been studied. Nanoparticles, like other materials, may have a diverse set of properties that need to be determined. In this review, different features of silver, clay and copper nanoparticles, such as their anti-microbial, cell toxicity, genetic toxicity, mechanical properties, and migration, are critically evaluated in the case of food packaging. Specifically, the viewpoints of WHO, FDA, and ESFA, concerning the nano-silver application in food packaging, are discussed as well.
The aim of this study was to evaluate the presence and possibility of extracting compounds with antioxidant properties of soybean cake to extend the storage stability of soybean oil. Results showed that the highest DPPH radical scavenging activity was observed for sample to solvent ratio 1:25 while extracting by 70% ethanol for 3 h). The most phenolic compounds equivalents (Gallic acid) was observed for sample to solvent ratio 1:25 while extracting by 70% methanol for 14 h. In addition, the soybean cake extract at concentrations of 50, 100, 150 and 200 ppm in soybean oil could significantly lower the peroxide, diene and p-anisidine values of soy oil during storage at 65 °C.