Displaying all 3 publications

Abstract:
Sort:
  1. Khoo SP, Bhoo-Pathy N, Yap SH, Anwar Shafii MK, Hairizan Nasir N, Belinson J, et al.
    Sex Transm Infect, 2018 06;94(4):277-283.
    PMID: 29180538 DOI: 10.1136/sextrans-2017-053320
    OBJECTIVES: Cervical cancer is a largely preventable disease, and the strategic implementation of a cervical cancer prevention programme is partly dependent on the impact of human papillomavirus (HPV) infection interpreted within the context of the country's sociodemographic attributes. The objective of this study is to determine the prevalence of cervicovaginal HPV infection among a healthy, community-based, multiethnic Malaysian population. The HPV prevalence was subsequently correlated to the individual's sociodemographics and sexual/reproductive history. Of significance, the observed prevalence captured was in a birth cohort not included in the national school-based HPV vaccination programme.

    METHODS: This was a cross-sectional study where 1293 healthy women aged between 18 and 60 years were recruited via convenience sampling from five community-based clinics in Selangor, Malaysia. Cervicovaginal self-samples were obtained and DNA was extracted for HPV detection and genotyping. A comprehensive questionnaire was administered to determine the sociodemographics and behavioural patterns of participants.

    RESULTS: The median age at enrolment was 37 years old (IQR: 30-47). In total, 86/1190 (7.2%) of the samples collected were positive for HPV infection, with the highest HPV prevalence (11.9%) detected in the subgroup of 18-24 years old. The top three most prevalent HPV genotypes were HPV 16, 52 and 58. The independent risk factors associated with higher rates of HPV infection included Indian ethnicity, widowed status and women with partners who are away from home for long periods and/or has another sexual partner.

    CONCLUSIONS: The overall prevalence of HPV infection in this Malaysian multiethnic population was 7.2%, with 6.5% being high-risk genotypes. The top three most common high-risk HPV types were HPV 16, 52 and 58. This information is important for the planning of primary (HPV vaccination) and secondary (screening) cervical cancer prevention programmes in Malaysia.

  2. Zhang W, Jiang B, Zeng M, Duan Y, Wu Z, Wu Y, et al.
    J Virol, 2020 04 16;94(9).
    PMID: 32075929 DOI: 10.1128/JVI.01850-19
    Duck Tembusu virus (DTMUV), which is similar to other mosquito-borne flaviviruses that replicate well in most mammalian cells, is an emerging pathogenic flavivirus that has caused epidemics in egg-laying and breeding waterfowl. Immune organ defects and neurological dysfunction are the main clinical symptoms of DTMUV infection. Preinfection with DTMUV makes the virus impervious to later interferon (IFN) treatment, revealing that DTMUV has evolved some strategies to defend against host IFN-dependent antiviral responses. Immune inhibition was further confirmed by screening for DTMUV-encoded proteins, which suggested that NS2A significantly inhibited IFN-β and IFN-stimulated response element (ISRE) promoter activity in a dose-dependent manner and facilitated reinfection with duck plague virus (DPV). DTMUV NS2A was able to inhibit duck retinoic acid-inducible gene-I (RIG-I)-, and melanoma differentiation-associated gene 5 (MDA5)-, mitochondrial-localized adaptor molecules (MAVS)-, stimulator of interferon genes (STING)-, and TANK-binding kinase 1 (TBK1)-induced IFN-β transcription, but not duck TBK1- and interferon regulatory factor 7 (IRF7)-mediated effective phases of IFN response. Furthermore, we found that NS2A competed with duTBK1 in binding to duck STING (duSTING), impaired duSTING-duSTING binding, and reduced duTBK1 phosphorylation, leading to the subsequent inhibition of IFN production. Importantly, we first identified that the W164A, Y167A, and S361A mutations in duSTING significantly impaired the NS2A-duSTING interaction, which is important for NS2A-induced IFN-β inhibition. Hence, our data demonstrated that DTMUV NS2A disrupts duSTING-dependent antiviral cellular defenses by binding with duSTING, which provides a novel mechanism by which DTMUV subverts host innate immune responses. The potential interaction sites between NS2A and duSTING may be the targets of future novel antiviral therapies and vaccine development.IMPORTANCE Flavivirus infections are transmitted through mosquitos or ticks and lead to significant morbidity and mortality worldwide with a spectrum of manifestations. Infection with an emerging flavivirus, DTMUV, manifests with clinical symptoms that include lesions of the immune organs and neurological dysfunction, leading to heavy egg drop and causing serious harm to the duck industry in China, Thailand, Malaysia, and other Southeast Asian countries. Mosquito cells, bird cells, and mammalian cell lines are all susceptible to DTMUV infection. An in vivo study revealed that BALB/c mice and Kunming mice were susceptible to DTMUV after intracerebral inoculation. Moreover, there are no reports about DTMUV-related human disease, but antibodies against DTMUV and viral RNA were detected in serum samples of duck industry workers. This information implies that DTMUV has expanded its host range and may pose a threat to mammalian health. However, the pathogenesis of DTMUV is largely unclear. Our results show that NS2A strongly blocks the STING-induced signal transduction cascade by binding with STING, which subsequently blocks STING-STING binding and TBK1 phosphorylation. More importantly, the W164, Y167, or S361 residues in duSTING were identified as important interaction sites between STING and NS2A that are vital for NS2A-induced IFN production and effective phases of IFN response. Uncovering the mechanism by which DTMUV NS2A inhibits IFN in the cells of its natural hosts, ducks, will help us understand the role of NS2A in DTMUV pathogenicity.
  3. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links