Displaying all 6 publications

Abstract:
Sort:
  1. Lan T, Yao Z, Zheng G, Wongprom P, Li S
    Zootaxa, 2020 May 14;4778(2):zootaxa.4778.2.4.
    PMID: 33055822 DOI: 10.11646/zootaxa.4778.2.4
    The genus Savarna Huber, 2005 comprises only five species, from southern Thailand, Peninsular Malaysia and Sumatra. In this study, five new species are described from Thailand: Savarna bannang sp. nov. (Yala), S. chiangmai sp. nov. (Chiangmai), S. huahin sp. nov. (Prachuap Kiri Khan), S. satun sp. nov. (Satun), S. thungsong sp. nov. (Nakhon Srithammarat). All new species are described from males and females. The distribution of S. chiangmai sp. nov. represent the northernmost record of the genus.
  2. Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, et al.
    Environ Pollut, 2023 Nov 01;336:122451.
    PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451
    The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
  3. Shahab M, Aiman S, Alshammari A, Alasmari AF, Alharbi M, Khan A, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126678.
    PMID: 37666399 DOI: 10.1016/j.ijbiomac.2023.126678
    Jamestown Canyon virus (JCV) is a deadly viral infection transmitted by various mosquito species. This mosquito-borne virus belongs to Bunyaviridae family, posing a high public health threat in the in tropical regions of the United States causing encephalitis in humans. Common symptoms of JCV include fever, headache, stiff neck, photophobia, nausea, vomiting, and seizures. Despite the availability of resources, there is currently no vaccine or drug available to combat JCV. The purpose of this study was to develop an epitope-based vaccine using immunoinformatics approaches. The vaccine aimed to be secure, efficient, bio-compatible, and capable of stimulating both innate and adaptive immune responses. In this study, the protein sequence of JCV was obtained from the NCBI database. Various bioinformatics methods, including toxicity evaluation, antigenicity testing, conservancy analysis, and allergenicity assessment were utilized to identify the most promising epitopes. Suitable linkers and adjuvant sequences were used in the design of vaccine construct. 50s ribosomal protein sequence was used as an adjuvant at the N-terminus of the construct. A total of 5 CTL, 5 HTL, and 5 linear B cell epitopes were selected based on non-allergenicity, immunological potential, and antigenicity scores to design a highly immunogenic multi-peptide vaccine construct. Strong interactions between the proposed vaccine and human immune receptors, i.e., TLR-2 and TLR-4, were revealed in a docking study using ClusPro software, suggesting their possible relevance in the immunological response to the vaccine. Immunological and physicochemical properties assessment ensured that the proposed vaccine demonstrated high immunogenicity, solubility and thermostability. Molecular dynamics simulations confirmed the strong binding affinities, as well as dynamic and structural stability of the proposed vaccine. Immune simulation suggest that the vaccine has the potential to effectively stimulate cellular and humoral immune responses to combat JCV infection. Experimental and clinical assays are required to validate the results of this study.
  4. Shahab M, Iqbal MW, Ahmad A, Alshabrmi FM, Wei DQ, Khan A, et al.
    Comput Biol Med, 2024 Mar;170:108056.
    PMID: 38301512 DOI: 10.1016/j.compbiomed.2024.108056
    The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
  5. Fryer AL, Abdullah A, Mobilio F, Jobling A, Moore Z, de Veer M, et al.
    Br J Pharmacol, 2024 May 06.
    PMID: 38710660 DOI: 10.1111/bph.16347
    BACKGROUND AND PURPOSE: Traumatic brain injury (TBI) remains a major public health concern worldwide with unmet effective treatment. Stimulator of interferon genes (STING) and its downstream type-I interferon (IFN) signalling are now appreciated to be involved in TBI pathogenesis. Compelling evidence have shown that STING and type-I IFNs are key in mediating the detrimental neuroinflammatory response after TBI. Therefore, pharmacological inhibition of STING presents a viable therapeutic opportunity in combating the detrimental neuroinflammatory response after TBI.

    EXPERIMENTAL APPROACH: This study investigated the neuroprotective effects of the small-molecule STING inhibitor n-(4-iodophenyl)-5-nitrofuran-2-carboxamide (C-176) in the controlled cortical impact mouse model of TBI in 10- to 12-week-old male mice. Thirty minutes post-controlled cortical impact surgery, a single 750-nmol dose of C-176 or saline (vehicle) was administered intravenously. Analysis was conducted 2 h and 24 h post-TBI.

    KEY RESULTS: Mice administered C-176 had significantly smaller cortical lesion area when compared to vehicle-treated mice 24 h post-TBI. Quantitative temporal gait analysis conducted using DigiGait™ showed C-176 administration attenuated TBI-induced impairments in gait symmetry, stride frequency and forelimb stance width. C-176-treated mice displayed a significant reduction in striatal gene expression of pro-inflammatory cytokines Tnf-α, Il-1β and Cxcl10 compared to their vehicle-treated counterparts 2 h post-TBI.

    CONCLUSION AND IMPLICATIONS: This study demonstrates the neuroprotective activity of C-176 in ameliorating acute neuroinflammation and preventing white matter neurodegeneration post-TBI. This study highlights the therapeutic potential of small-molecule inhibitors targeting STING for the treatment of trauma-induced inflammation and neuroprotective potential.

  6. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links