Displaying all 4 publications

Abstract:
Sort:
  1. Lai D, Zhou A, Tan BK, Tang Y, Sarah Hamzah S, Zhang Z, et al.
    Food Chem, 2021 Nov 01;361:130117.
    PMID: 34058659 DOI: 10.1016/j.foodchem.2021.130117
    To overcome the poor water solubility of curcumin, a curcumin-β-cyclodextrin (Cur-β-CD) complex was prepared as a novel photosensitizer. Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to verify the formation of Cur-β-CD. Furthermore, the ROS generation capacity and photodynamic bactericidal effect were measured to confirm this Cur-β-CD complex kept photodynamic activity of curcumin. The result showed Cur-β-CD could effectively generate ROS upon blue-light irradiation. The plate count assay demonstrated Cur-β-CD complex possess desirable photodynamic antibacterial effect against food-borne pathogens including Staphylococcus aureus, Listeria monocytogenes and Escherichia coli. The cell morphology determined by scanning electron microscope (SEM) and transmission electron microscope (TEM) showed Cur-β-CD could cause cell deformation, surface collapse and cell structure damage of the bacteria, resulting in the leakage of cytoplasmic; while agarose gel electrophoresis and SDS-PAGE further illustrated the inactivation mechanisms by Cur-β-CD involve bacterial DNA damage and protein degradation.
  2. Lin Y, Hu J, Li S, Hamzah SS, Jiang H, Zhou A, et al.
    Molecules, 2019 Jun 27;24(13).
    PMID: 31252525 DOI: 10.3390/molecules24132374
    Fresh-cut fruits and vegetables are the main sources of foodborne illness outbreaks with implicated pathogens such as Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes. This study aimed at investigating the influence of two key parameters (concentration of curcumin and illumination time) on the effects of curcumin-based photodynamic sterilization on the preservation of fresh-cut Hami melons. The results indicated that illumination with 50 μmol/L curcumin for 60 min using a blue LED lamp reduced the total aerobic microorganism count by ~1.8 log CFU/g in fresh-cut Hami melons. Besides this, the effects of photodynamic sterilization on the soluble solids content, color, water content, firmness, and sensory indices of the fresh-cut Hami melons were also evaluated. Compared to the control group, photodynamic sterilization can effectively delay the browning rate and maintain the luminosity, firmness, water content, and soluble solids content of fresh-cut Hami melon. The sensory quality was indeed preserved well after 9 days of storage in a fridge. These results showed that photodynamic sterilization is an effective and promising technology to prolong the shelf life of fresh-cut Hami melons.
  3. Lai D, Zhou F, Zhou A, Hamzah SS, Zhang Y, Hu J, et al.
    Carbohydr Polym, 2022 Apr 15;282:119112.
    PMID: 35123747 DOI: 10.1016/j.carbpol.2022.119112
    In this study, a biodegradable photodynamic antibacterial film (Car-Cur) was prepared using casting method with κ-Carrageenan (κ-Car) as film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. The comprehensive performance of this Car-Cur film was investigated. The obtained results showed that the concentration of Cur-β-CD was an important factor determining the properties of film including tensile strength (TS) elongation at break (EB), water vapor permeability (WVP), water content (WC) and thermal stability. When the concentration of Cur-β-CD is 1%, the film demonstrated the maximum TS and EB, increased thermal stability, with desirable WVP and WC. Furthermore, this film also showed good photodynamic antibacterial potential against Staphylococcus aureus and Escherichia coli upon irradiation of blue LED light. Moreover, the film can be degraded in the soil in one week. In conclusion, our results suggested Car-Cur photodynamic film could be developed as biodegradable antimicrobial packaging material for food preservation.
  4. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links